KONSORSIUM MIKROBA LINTAS KINGDOM DALAM BIOREMEDIASI LIMBAH CAIR DENGAN PENDEKATAN INTEGRATIF OMIK DAN EKOLOGI SINTETIS: SUATU LITERATURE REVIEW

Authors

  • syamsul
  • Yusminah Hala Universitas Negeri Makassar

DOI:

https://doi.org/10.30605/biogenerasi.v10i4.7455

Keywords:

Cross-kingdom consortia, omics, synthetic ecology

Abstract

Wastewater bioremediation demonstrates substantially improved performance when employing cross-kingdom microbial consortia, as bacteria, fungi, and microalgae complement one another in carrying out successive stages of organic and persistent pollutant degradation. This review summarizes current findings on the functional mechanisms of such consortia, including metabolic division of labor, metabolite exchange, enzymatic complementarity, and the role of biofilms in maintaining community stability. The literature indicates that cross-kingdom systems are highly effective in removing pollutants such as hydrocarbons, synthetic dyes, pharmaceuticals, nutrients, and microplastics. The integration of omics approaches provides a clearer understanding of the genes, metabolic pathways, and cellular activities involved in degradation processes. Synthetic ecology contributes to strengthening consortium design through spatial arrangement, directed functional roles, and controlled interspecies interactions. Overall, cross-kingdom microbial consortia supported by omics analyses and synthetic ecological concepts offer a solid foundation for developing more efficient and sustainable. wastewater bioremediation systems.

 

Downloads

Download data is not yet available.

References

Abate, R., Oon, Y.-S., Oon, Y.-L., & Bi, Y. (2024). Heliyon Microalgae-bacteria nexus for environmental remediation and renewable energy resources : Advances , mechanisms and biotechnological applications. Heliyon, 10, 1–28. https://doi.org/10.1016/j.heliyon.2024.e31170

Arikan, M., & Muth, T. (2023). Integrated Multi-Omics Analyses of Microbial Communities: a Review of the Current State and Future Directions. Molecular Omics, 19(8), 607–623. https://doi.org/10.1039/d3mo00089c

Cai, Z., Karunkaran, E., & Pandhal, J. (2024). Bottom-up construction and screening of algae-bacteria consortia for pollutant biodegradation. Frontiers in Microbiology, 15, 1–16. https://doi.org/10.3389/fmicb.2024.1349016

Cao, Z., Yan, W., Ding, M., & Yuan, Y. (2022). Construction of microbial consortia for microbial degradation of complex compounds. Frontiers in Bioengineering and Biotechnology, 10, 1–14. https://doi.org/10.3389/fbioe.2022.1051233

Che, S., & Men, Y. (2019). Synthetic microbial consortia for biosynthesis and biodegradation : promises and challenges. Journal of Industrial Microbiology & Biotechnology, 46(9), 1343–1358. https://doi.org/10.1007/s10295-019-02211-4

Chen, L., Tang, T., Li, D., Wang, Z., Wu, S., & Liu, Y. (2025). Characterization of microbial consortium for rice straw degradation and the role of nitrogen sources in community assembly. Chemical Engineering Journal, 520(July), 166199. https://doi.org/10.1016/j.cej.2025.166199

Chen, M., Tian, S., He, T., Qin, L., Liu, H., & Qifeng, W. (2025). Microbial consortium composed of efficient denitrifying strains and bacterial groups from toilet water for enhancing blackwater treatment. Journal of Environmental Chemical Engineering, 13(5), 117676. https://doi.org/10.1016/j.jece.2025.117676

Chen, Y. C., Destouches, L., Cook, A., & Fedor, A. J. H. (2024). Synthetic microbial ecology : engineering habitats for modular consortia. Journal of Applied Microbiology, 135(7), 1–16. https://doi.org/https://doi.org/10.1093/jambio/lxae158

Dai, C., & Wang, F. (2024). Bioresource Technology Potential applications of microalgae – bacteria consortia in wastewater treatment and biorefinery. Bioresource Technology, 393, 1–11. https://doi.org/https://doi.org/10.1016/j.biortech.2023.130019

Deep, A., Sieber, G., Boden, L., David, G. M., Baikova, D., Buchner, D., Starke, J., Stach, T. L., Reinders, T., Hadziomerovic, U., Beszteri, S., Probst, A. J., Boenigk, J., & Beisser, D. (2025). A metatranscriptomic exploration of fungal and bacterial contributions to allochthonous leaf litter decomposition in the streambed. Bioinformatics and Genomics, 13, 1–20. https://doi.org/10.7717/peerj.19120

Dell’Anno, F., Rastelli, E., Sansone, C., Brunet, C., Ianora, A., & Anno, A. D. (2021). Bacteria , Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms Review, 9(8), 1–22. https://doi.org/10.3390/microorganisms9081695

Efremenko, E., Stepanov, N., Senko, O., Aslanli, A., Maslova, O., & Lyagin, I. (2024). Using Fungi in Artificial Microbial Consortia to Solve Bioremediation Problems. Microorganisms, 12(3), 1–26. https://doi.org/https://doi.org/10.3390/microorganisms12030470

Giyahchi, M., & Moghimi, H. (2025). Ecotoxicology and Environmental Safety Sustainable solution for microplastic removal : Sequential biodegradation and detoxification of polyethylene terephthalate microplastics by two natural microbial consortia. Ecotoxicology and Environmental Safety, 302(July), 118738. https://doi.org/10.1016/j.ecoenv.2025.118738

Guandalupe, J. J., Pazmiño-vela, M., Pozo, G., Vernaza, W., Ochoa-herrera, V., Torres, M. de L., & Torres, A. F. (2024). Metagenomic analysis of microbial consortia native to the Amazon , Highlands , and Galapagos regions of Ecuador with potential for wastewater remediation. Environmental Microbiology Reports, 16(3), 1–18. https://doi.org/10.1111/1758-2229.13272

Herold, M., Arbas, S. M., Narayanasamy, S., Sheik, A. R., Kleine-borgmann, L. A. K., Lebrun, L. A., Kunath, B. J., Roume, H., Bessarab, I., Williams, R. B. H., Gillece, J. D., Schupp, J. M., Keim, P. S., Jäger, C., Hoopmann, M. R., Moritz, R. L., Ye, Y., Li, S., Tang, H., … Wilmes, P. (2020). Integration of Time-Series Meta-Omics Data Reveals How Microbial Ecosystems Respond to Disturbance. Nature Communications, 11, 1–14. https://doi.org/10.1038/s41467-020-19006-2

Jiang, W., Wang, S., Gu, F., Yang, X., Qi, Q., & Liang, Q. (2025). Advances in synthetic microbial ecosystems approach for studying ecological interactions and their influencing factors. Engineering Microbiology, 5(2), 100205. https://doi.org/10.1016/j.engmic.2025.100205

Keneally, C., Chilton, D., Dornan, T. N., Kidd, S. P., Gaget, V., Toomes, A., Lassaline, C., Petrovski, R., Wood, L., & Brookes, J. D. (2025). Multi-Omics Reveal Microbial Succession and Metabolomic Adaptations to Flood in a Hypersaline Coastal Lagoon. Water Research, 280, 1–11. https://doi.org/10.1016/j.watres.2025.123511

Kong, W., Kong, J., Feng, S., Yang, T., Xu, L., Shen, B., & Bi, Y. (2024). Cultivation of microalgae – bacteria consortium by waste gas – waste water to achieve ­ CO 2 fixation , wastewater purification and bioproducts production. Biotechnology for Biofuels and Bioproducts, 1–21. https://doi.org/10.1186/s13068-023-02409-w

Li, X., Dai, Y., Guan, X., Han, Z., Li, X., Wang, X., Su, Z., Zhang, H., & Xu, M. (2025). Environmental Technology & Innovation Taxonomic structure and functional assembly of the broad-spectrum sulfonylurea herbicide-degrading microbial consortium L1 under different herbicide substrates. Environmental Technology & Innovation, 40, 1–23. https://doi.org/10.1016/j.eti.2025.104446

López-patiño, A. M., Cárdenas-orrego, A., Torres, A. F., Navarrete, D., Champagne, P., & Ochoa-herrera, V. (2024). Native microalgal-bacterial consortia from the Ecuadorian Amazon region : an alternative to domestic wastewater treatment. Frontiers in Bioengineering and Biotechnology, 12, 1–14. https://doi.org/10.3389/fbioe.2024.1338547

Lü, H., Wei, J., Tang, G., Chen, Y., Huang, Y., Hu, R., Mo, C., Zhao, H., Xiang, L., Li, Y., Cai, Q., & Li, Q. X. (2024). Microbial consortium degrading of organic pollutants : Source , degradation efficiency , pathway , mechanism and application. Journal of Cleaner Production, 451(December 2023), 141913. https://doi.org/10.1016/j.jclepro.2024.141913

Mahajan, M., & Prakash, A. (2025). Bacterial Consortia as potential Bioremediation Wastewater Treatment : A Comprehensive Review Mansi Mahajan and Alka Prakash agents for. International Journal of Advancement in Life Sciences Research, 8(1), 16–33. https://doi.org/https://doi.org/10.31632/ijalsr.2025.v08i01.002

Nam, N. N., Do, H. D. K., Trinh, K. T. L., & Lee, N. Y. (2023). Metagenomics : An Effective Approach for Exploring Microbial. Foods, 12(11), 1–23. https://doi.org/https://doi.org/10.3390/foods12112140

Nunes, P. S. O., Lacerda-junior, G. V, Mascarin, G. M., Guimar, R. A., Medeiros, F. H. V, Arthurs, S., & Bettiol, W. (2024). Microbial consortia of biological products : Do they have a future ? Biological Control, 188, 1–17. https://doi.org/10.1016/j.biocontrol.2024.105439

Ren, J., Peng, Q., Du, Z., Yang, X., Hui, J., Li, R., & Cheng, W. (2025). Multi-Omics Insights Into Micro-Oxygen-Regulated Microbial Decolorization and Metabolic Pathways During Hydrolysis and Acidification of Textile Wastewater. Journal of Cleaner Production, 527, 1–13. https://doi.org/10.1016/j.jclepro.2025.146707

Renganathan, P., & Gaysina, L. A. (2025). Next-Generation Wastewater Treatment : Omics and AI-Driven Microbial Strategies for Xenobiotic Bioremediation and Circular Resource Recovery. Processes, 13(10), 1–28. https://doi.org/https://doi.org/10.3390/pr13103218

Renganathan, P., Gaysina, L. A., Gutiérrez, C. G., Puente, E. O. R., & Sainz-hernández, J. C. (2025). Harnessing Engineered Microbial Consortia for Xenobiotic Bioremediation : Integrating Multi-Omics and AI for Next-Generation Wastewater Treatment. Journal of Xenobiotics, 15(4), 1–29. https://doi.org/https://doi.org/10.3390/jox15040133

Rezaei, Z., & Moghimi, H. (2024). Ecotoxicology and Environmental Safety Fungal-bacterial consortia : A promising strategy for the removal of petroleum hydrocarbons. Ecotoxicology and Environmental Safety, 280(December 2023), 116543. https://doi.org/10.1016/j.ecoenv.2024.116543

Román, M. S., Arrabal, A., Benitez-Dominguez, B., Quirós-Rodríguez, I., & Diaz-Colunga, J. (2025). Towards synthetic ecology : strategies for the optimization of microbial community functions. Frontiers in Synthetic Biology, 3, 1–14. https://doi.org/10.3389/fsybi.2025.1532846

Sesay, F., Sesay, R. E. V., Kamara, M., Li, X., & Niu, C. (2025). Biodegradation of pharmaceutical contaminants in wastewater using microbial consortia : Mechanisms , applications , and challenges. Journal of Environmental Management, 384(December 2024), 125564. https://doi.org/10.1016/j.jenvman.2025.125564

Sidhu, C., Vikram, S., & Pinnaka, A. K. (2017). Unraveling the Microbial Interactions and Metabolic Potentials in Pre- and Post-treated Sludge from a Wastewater Treatment Plant Using Metagenomic Studies. Frontiers in Microbiology, 8, 1–10. https://doi.org/10.3389/fmicb.2017.01382

Thirumalaivasan, N., & Gnanasekaran, L. (2024). Utilization of fungal and bacterial bioremediation techniques for the treatment of toxic waste and biowaste. Frontiers in Materials, 11, 1–20. https://doi.org/10.3389/fmats.2024.1416445

Wang, K., Liu, L., Li, H., Sheng, J., Ji, H., Yan, Y., Zhang, J., Wang, Y., Wang, H., Zhang, Y., Zhu, Z., & Sun, X. (2025). Bioresource Technology Enhanced wastewater treatment using microalgae-bacteria-fungi consortia with brassinolide. Bioresource Technology, 437(June), 133182. https://doi.org/10.1016/j.biortech.2025.133182

Wang, Q., Cui, J., Chen, N., Zhang, X., Ma, Y., & Zhang, K. (2025). Bioresource Technology Effects of bisphenol A on nitrogen removal in sulfur autotrophic denitrification-Anammox microbial consortia : Resilience , biotransformation , and toxicity. Bioresource Technology, 438(June), 133252. https://doi.org/10.1016/j.biortech.2025.133252

Wang, Y., Cheng, H., Wang, P., Fan, R., Luo, L., & Lin, G. (2025). Promotion of growth and biological state of microalgae-bacteria consortia during swine wastewater treatment doped with nano-sized iron. Scientific Reports, 15, 1–14. https://doi.org/https://doi.org/10.1038/s41598-025-06352-8

Yang, X., Feng, K., Wang, S., Yuan, M. M., Peng, X., He, Q., Wang, D., Shen, W., Zhao, B., Du, X., Wang, Y., Wang, L., Cao, D., & Liu, W. (2024). Unveiling the deterministic dynamics of microbial meta ‑ metabolism : a multi ‑ omics investigation of anaerobic biodegradation. Microbiome, 12, 1–17. https://doi.org/10.1186/s40168-024-01890-1

Downloads

Published

2025-12-01

How to Cite

syamsul, & Hala, Y. (2025). KONSORSIUM MIKROBA LINTAS KINGDOM DALAM BIOREMEDIASI LIMBAH CAIR DENGAN PENDEKATAN INTEGRATIF OMIK DAN EKOLOGI SINTETIS: SUATU LITERATURE REVIEW . Jurnal Biogenerasi, 10(4), 2223–2234. https://doi.org/10.30605/biogenerasi.v10i4.7455