EVALUASI KUALITATIF AKURASI DAN KONSISTENSI HASIL VISUALISASI META AI DALAM MENGGAMBARKAN MORFOLOGI INDIVIDU GULMA PADA PERKEBUNAN KOPI DI INDONESIA

Authors

  • Nindy Permatasari Jurusan Budidaya Tanaman Perkebunan, Politeknik Negeri Lampung
  • Priyambodo Priyambodo a:1:{s:5:"en_US";s:51:"Jurusan Biologi, Fakultas MIPA, Universitas Lampung";}

DOI:

https://doi.org/10.30605/biogenerasi.v10i1.5237

Keywords:

gulma tanaman perkebunan, evaluasi, Meta AI

Abstract

Popularitas penggunaan kecerdasan buatan semakin peningkat di kalangan masyarat, termasuk Meta AI yang menjadi salah satu fasilitas pada media sosial whatsapp. Kecerdasan buatan dapat digunakan untuk menghasilkan citra dengan prompt yang dibuat secara khusus. Kemampuan ini dapat digunakan untuk mengenalkan gulma pada perkebunan kopi, sehingga diharapkan dapat membantu optimalisasi produksi kopi di Indonesia. Namun, perlu pengujian akurasi dan konsistensi dari gambar yang dihasilkan oleh Meta AI. Penelitian ini bertujuan untuk menguji secara kualitatif hasil gambar Meta AI pada tujuh gulma kopi, yaitu (a) Ageratum conyzoides, (b) Synedrella nodiflora (L.) Gaertn., (c) Drymaria cordata, (d) Setaria plicata, (e) Crassocephalum crepidioides, (f) Axonopus compressus, dan (g) Alternanthera philloxeroides.Pengujian dilakukan pada lima handphone yang berbeda merk dan terkoneksi pada nomor seluler yang berbeda. Berdasarkan hasil visualisasi yang diberikan, Meta AI mempunyai akurasi dan konsistensi rendah dalam mencitrakan morfologi gulma pada perkebunan kopi. Oleh karena itu, hasil visualisasi dari Meta AI tidak bisa dijadikan acuan ilmiah secara langsung

Downloads

Download data is not yet available.

References

Alfarraj, Y. F., & Wardat, Y. (2024). Exploring the Impact of ChatGPT on Scientific Research: Assessing Strengths, Weaknesses, Opportunities, and Threats. Education as Change, 28(1), 1-27.
Alia, P. A., S ST, M. T., Prayogo, J. S., Kriswibowo, R., Kom, S., & Kom, M. (2024). Implementation Open Artificial Intelligence ChatGPT Integrated with Whatsapp Bot. Advance Sustainable Science, Engineering and Technology (ASSET), 6(1), 02401019-01.
Apriantonedi, R., Fransiko, E., Fernandez, R., & Parwito, P. (2023). Identifikasi Keanekaragaman dan Dominansi Gulma pada Perkebunan Kopi di Kabupaten Rejang Lebong. PUCUK: Jurnal Ilmu Tanaman, 3(2), 59-62.
CNN Indonesia. (2024, Desember). Meta AI Hadir di WhatsApp, Komdigi Siapkan Regulasi Penggunaan AI. https://www.cnnindonesia.com/teknologi/20241219104929-185-1178993/meta-ai-hadir-di-whatsapp-komdigi-siapkan-regulasi-penggunaan-ai. Diakses 9 Januari 2025.
Dagawal, M. J., & Bhogaonkar, P. Y. (2016). Pharmacognostic studies of Ageratum conynzoides L. Journal of Ravishankar University, 29(1).
Delfini, C., Acosta, J. M., Souza, V. C., & Zuloaga, F. O. (2020). Molecular Phylogeny of Axonopus (Poaceae, Panicoideae, Paspaleae): Monophyly, Synapomorphies, and Taxonomic Implications for Infrageneric Classification and Species Complexes1. Annals of the Missouri Botanical Garden, 105(4), 459-480.
Dwiati, M., & Susanto, A. H. (2020). Morphological and Physiological Adaptation of Synedrella nodiflora (L.) Gaertn. in Various Altitudes. In IOP Conference Series: Earth and Environmental Science (Vol. 550, No. 1, p. 012014). IOP Publishing.
Evita, N., Helen, H., & Widjanarko, I. (2023). Aktivitas Forwarded Messages pada Pengguna WhatsApp di Berbagai Usia dan Gender. WACANA: Jurnal Ilmiah Ilmu Komunikasi, 22(1), 121-130.
Fauziah, L.K., Same, M., Sari, R. P. K., & Permatasari, N. (2023). Invetarisasi Gulma pada Perkebunan Kopi Rakyat di Desa Tugusari, Sumber Jaya, Lampung Barat. Biofarm: Jurnal Ilmiah Pertanian, 19(2), 222-226.
Filho, P. R. M.S., & Takaki, M. (2011). Dimorphic cypsela germination and plant growth in Synedrella nodiflora (L.) Gaertn. (Asteraceae). Brazilian Journal of Biology, 71, 541-548.
Giray, L., Jacob, J., & Gumalin, D. L. (2024). Strengths, Weaknesses, Opportunities, and Threats of Using ChatGPT in Scientific Research. International Journal of Technology in Education, 7(1), 40-58.
He, L., Teng, L., Tang, X., Long, W., Wang, Z., Wu, Y., & Liao, L. (2021). Agro-morphological and metabolomics analysis of low nitrogen stress response in Axonopus compressus. AoB Plants, 13(4), plab022.
Kavitha, D., & Prabhakaran, J. (2019). Morphological and anatomical features of Invasive alien weed species Ageratum conyzoides L accessions from Tamilnadu, India. Plant science archives, 4(2):15-19. doi: 10.51470/psa.2019.4.2.15
Keni, S. (2024). Evaluating artificial intelligence for medical imaging: a primer for clinicians. British Journal of Hospital Medicine, 85(7), 1-13.
Keshavarzi, M., Mosaferi, S., & Hosseini, F. (2023). Lemma and palea micromorphological study of Setaria species (Poaceae) in Iran. Acta Biologica Szegediensis, 67(2), 235-242.
Kurniawati, A., Aziz, E. S., & Faridah, D. N. (2023). Morphophysiology of indigenous vegetable Sintrong (Crassocephalum crepidiodes) from several areas in West Java. In IOP Conference Series: Earth and Environmental Science (Vol. 1220, No. 1, p. 012013). IOP Publishing.
Lovo, J., & Devecchi, M. F. (2018). Flora das cangas da Serra dos Carajás, Pará, Brasil: Caryophyllaceae. Rodriguésia, 69(3), 1081-1083.
Muhlis, A., & Sulistyaningsih, S. (2023). Analisis Daya Saing Kopi Indonesia di Pasar Internasional. AGRIBIOS, 21(1), 25-33.
Noel, G. P. (2024). Evaluating AI‐powered text‐to‐image generators for anatomical illustration: A comparative study. Anatomical Sciences Education, 17(5), 979-983.
Oyelakin, A. S., & Ayodele, M. S. (2013). Morphotaxonomic evaluation of the relationship between four species of Crassocephalum (Moench.) S. Moore (Asteraceae) in southwestern Nigeria. Scientific Research and Essays, 8(33), 1629-1636.
Permatasari, N., Same, M., & Sari, R. P. K. (2023). Analysis of weed vegetation in robusta coffee (Coffea robusta L.) traditional farm at Pesawaran, Lampung. Jurnal Biologi Tropis, 23(4), 67-75.
Permatasari, N., & Priyambodo (2024). Evaluasi Kemampuan Kecerdasan Buatan Text-to-image dalam Mencitrakan Karakter Genetik pada Sifat Fenotipik Biji Kopi Robusta dan Arabika. Biofarm: Jurnal Ilmiah Pertanian, 20(2), 199-205.
Quan, Y., & Hui, B. (2024). Study screening for meta-research: An overview of AI tools. Routledge Handbook of Technological Advances in Researching Language Learning, 433-447.
Ramadhana, A. W. S., Aulia, A. D., & Ulum, T. (2024). Keunggulan Komparatif Ekspor Kopi di Indonesia. Journal of Economics, Business, Accounting and Management, 2(1), 110-123.
Rashidov, A., & Rashidova, F. (2024). Challenges and limitations in the use of artificial intelligence in research and some options to overcome them. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1-4). IEEE.
Rojas-Sandoval, J., & Acevedo-Rodríguez, P. (2022). 1. Drymaria cordata (tropical chickweed). CABI Compendium, doi: 10.1079/cpc.20020.20210100021
Sandve, G. K., Nekrutenko, A., Taylor, J., & Hovig, E. (2013). Ten simple rules for reproducible computational research. PLoS computational biology, 9(10), e1003285.
Santos, R.F., Nunes, B.M., Sá, R.B., Soares, L.A.L., Randau, K.P. (2016). 4. Morpho-anatomical study of Ageratum conyzoides. Revista Brasileira De Farmacognosia-brazilian Journal of Pharmacognosy, doi: 10.1016/J.BJP.2016.07.002
Shafi, S., Patil, S., Sayyed, S., Wagh, P. (2024). ext-to-Image Generation Using Stack Generative Adversarial Networks (GANs) and Stable Diffusion Models. International Journal for Research in Applied Science and Engineering Technology 12(11): 1426-1432 doi: 10.22214/ijraset.2024.65350
Singh, A., Joshi, P., & Kothari, Y. (2024, Februari). Linking Robots to Human Thought: Bridging Minds and Machines. In 2024 IEEE International Conference on Big Data & Machine Learning (ICBDML) (pp. 181-185). IEEE.
Soltis, P. S., Teixeira‐Costa, L., Bonnet, P., & Nelson, R. G. (2023). Advances in plant imaging across scales. Applications in Plant Sciences, 11(5).
Stanley, E. A., Souza, R., Winder, A. J., Gulve, V., Amador, K., Wilms, M., & Forkert, N. D. (2024). Towards objective and systematic evaluation of bias in artificial intelligence for medical imaging. Journal of the American Medical Informatics Association, 31(11), 2613-2621.
Thakur, R., Limboo, S., & Goyal, S. (2022). Drymaria cordata: review at a glance. Plant Archives (09725210), 22(1).
Thwaite, J.M. (2016). 1. The Genus Setaria. Annals of Tropical Medicine and Parasitology, doi: 10.1080/00034983.1927.11684550
Tustiyani, I., D.R. Nurjanah., S.S. Maesyaroh., J. Mutakin. (2018). Identifikasi keanekaragaman dan dominansi gulma pada lahan pertanaman jeruk (Citrus Sp.). Jurnal Kultivasi Vol. 18 (1) Hal 779-783.
Utami, S., Murningsih, M., & Muhammad, F. (2020). Keanekaragaman dan dominansi jenis tumbuhan gulma pada perkebunan kopi di hutan wisata nglimut kendal jawa tengah. Jurnal Ilmu Lingkungan, 18(2), 411-416.
Wang, Z. (2024). Enhancing Text-to-Image Generation: Integrating CLIP and Diffusion Models for Improved Visual Accuracy and Semantic Consistency. Applied and Computational Engineering, 105, 16-22.
Yang, C., Yang, X., Zhang, X., Zhou, C., Zhang, F., & Wang, Q. (2019). Anatomical structures of alligator weed (Alternanthera philoxeroides) suggest it is well adapted to the aquatic–terrestrial transition zone. Flora, 253, 27-34.

Downloads

Published

2025-01-15

How to Cite

Permatasari, N., & Priyambodo, P. (2025). EVALUASI KUALITATIF AKURASI DAN KONSISTENSI HASIL VISUALISASI META AI DALAM MENGGAMBARKAN MORFOLOGI INDIVIDU GULMA PADA PERKEBUNAN KOPI DI INDONESIA. Jurnal Biogenerasi, 10(1), 635–644. https://doi.org/10.30605/biogenerasi.v10i1.5237

Most read articles by the same author(s)