Parametric Represantations of Surfaces Containing a Common Isophote Curve In 3-Dimensional Galilean Space

Authors

  • ŞEYDA ÖZEL Fırat University, Faculty of Science, Deparment of Mathematics
  • Mehmet Bektaş Fırat University, Faculty of Science, Deparment of Mathematics

DOI:

https://doi.org/10.30605/proximal.v9i1.7851

Keywords:

the isophote curve, the non-isophote curve, the isophote asymtotic curve, Galilean 3-space

Abstract

This paper investigates a family of defined surfaces that share a common isophote curve in three‑dimensional Galilean space. By employing a given curve in this space with its Frenet frame we derive characterizations of the surfaces and present illustrative examples where in the curve functions, as an isophote.

Downloads

Download data is not yet available.

References

Doğan, F., Yayli, Y. (2015). On isophote curves and their characterizations. Turkish Journal, of Mathematics, 39(5), 650-664.

Koenderink, J. J., van Doorn, A. J. (1980). Photometric invariants related to solid shape. Optic Acta: International Journal of Optics, 27(7), 981-996.

Poeschl, T. (1984). Detecting surface irregularities using isophotes. Computer Aided Geometric Design, 1(2), 163-168.

Sara, R. Local Shading Analysis via Isophotes Properties. PhD, Johannes Kepler University, Austria, 1994.

Kim, K. J., Lee, I. K. (2003). Computing isophotos of surface of revolution and canal surface. Computer-aided design, 35(3), 215-223.

Izumiya, S., & Takeuchi, N. (2004). New special curves and developable surfaces. Turkish Journal of Mathematics, 28(2), 153-164.

Dogan, F. (2012). Isophote curves on timelike surfaces in Minkowski 3-space. arXiv preprint arXiv:1203.4389.

Ergün, E., Bayram, E., & Kasap, E. (2014). Surface pencil with a common line of curvature in Minkowski 3-space. Acta Mathematica Sinica, English Series, 30(12), 2103-2118.

Ergün, E., Bayram, E., & Kasap, E. (2015). Surface family with a common natural line of curvature lift. Journal of Science and Arts, 15(4), 321.

Yaglom, I. M. (2012). A simple non-Euclidean geometry and its physical basis: An elementary account of Galilean geometry and the Galilean principle of relativity. Springer Science & Business Media.

Musielak, Z. E., Fry, J. L. (2009). Physical theories in Galilean space-time and the origin of Schrödinger-like equations. Annals of Physics, 324(2), 296-308.

Aydın, M. E., Külahçı, M. A., & Öğrenmiş, A. O. (2019). Constant curvature surfaces in Galilean 3-space. International Electronic Journal of Geometry, 12(1), 9-19.

Dede, M. (2013). Tubular surfaces in Galilean space. Mathematical Communications, 18(1), 209-217.

Divjak, B., & Milin-Šipuš, Z. (2002). Special curves on ruled surfaces in Galilean and pseudo- Galilean spaces. Acta Mathematica Hungarica, 98(3), 203-215.

Yoon, D. W., Lee, J. W., & Lee, C. W. (2015). Osculating curves in the Galilean 4- space. International Journal of Pure and Applied Mathematics, 100(4), 497-506.

Yoon, D. W., Yüzbaşi, Z. K., & Bektaş, M. (2017). An approach for surfaces using an asymptotic curve in Lie Group. Journal of Advanced Physics, 6(4), 586-590.

Yüzbası, Z. K. (2016). On a family of surfaces with common asymptotic curve in the Galilean space G^3. J. Nonlinear Sci. Appl, 9, 518-523.

Ali, A. T., & Turgut, M. (2019). Some characterizations of isophote curves on surfaces. Mathematics and Computers in Simulation, 155, 196–206.

Celik, Y., & Onder, M. (2020). Special curves and surfaces in Galilean and pseudo-Galilean spaces. Applied Mathematics and Computation, 372, 124991.

Ersoy, S., & Tosun, M. (2021). Isophote curves according to the Darboux frame. Journal of Geometry, 112(2), 1–15.

Körpınar, T., & Demir, E. (2018). On isophote curves and surfaces in non-Euclidean spaces. Advances in Applied Clifford Algebras, 28(3), 1–14.

Downloads

Published

2026-02-04

How to Cite

ÖZEL, ŞEYDA, & Bektaş, M. (2026). Parametric Represantations of Surfaces Containing a Common Isophote Curve In 3-Dimensional Galilean Space. Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 9(1), 104–114. https://doi.org/10.30605/proximal.v9i1.7851