Analisis Peramalan Jumlah Kunjungan Wisatawan Domestik Menggunakan Model Long Short-Term Memory (LSTM) di Kota Pangkal Pinang
DOI:
https://doi.org/10.30605/proximal.v9i1.7478Keywords:
Peramalan, Long Short-Term Memory (LSTM), Jaringan Saraf Tiruan, Root Mean Square Error (RMSE)Abstract
Sektor pariwisata berperan penting sebagai pendorong utama pertumbuhan ekonomi suatu daerah, dengan jumlah wisatawan menjadi indikator yang patut diperhatikan. Peningkatan kunjungan wisatawan berimplikasi pada meningkatnya potensi risiko, sehingga diperlukan upaya peramalan yang tepat. Dalam penelitian ini, metode Long Short-Term Memory (LSTM) diterapkan untuk memprediksi jumlah perjalanan wisatawan domestik di Kota Pangkal Pinang dan dibandingkan dengan metode ARMA serta SARIMA. Hasil perbandingan menunjukkan bahwa metode LSTM menghasilkan nilai RMSE sebesar 32.431,219, yang lebih rendah dibandingkan ARMA (41.273,347) dan SARIMA (101.884,554). Hasil studi menunjukkan bahwa LSTM memiliki performa prediksi yang lebih efektif, sehingga metode ini lebih direkomendasikan.
Downloads
References
Allorerung, P. P., Erna, A., & Bagussahrir, M. (2024). Analisis Performa Normalisasi Data untuk Klasifikasi K-Nearest Neighbor pada Dataset Penyakit. 9(3), 178–191.
Badan Pusat Statistik Provinsi Kepulauan Bangka Belitung (2025). Jumlah perjalanan Wisatawan Nusantara (Wisnus) tujuan Provinsi Kepulauan Bangka Belitung pada Juni 2025 tercatat sebanyak 431,01 ribu perjalanan. https://babel.bps.go.id/id/pressrelease/2025/08/01/1210/jumlah-perjalanan-wisatawan-nusantara--wisnus--tujuan-provinsi-kepulauan-bangka-belitung-pada-juni-2025-tercatat-sebanyak-431-01-ribu-perjalanan.html
Indrizal, E., Nurti, Y., & Irwandi, A. (2024). Museum Hidup: Perkampungan Adat Nagari Sijunjung Dalam Kancah Industri Pariwisata. 22(3), 1950–1957. https://doi.org/10.33087/jiubj.v22i3.2834
Khaira, U., Alfalah, M., Claudia, P., Gulo, S., Purnomo, R., Studi, P., Informasi, S., Jambi, U., Darat, M., & Jambi, K. (2020). Prediksi Kemunculan Titik Panas Di Lahan Gambut Provinsi Riau Menggunakan Long Short Term Memory. 5(3), 77–82.
Marcelina, E., Agustin, T., Luthfiyaturrohmah, K., Octaviani, J., Pramita, A., Monika, I., Dalimunthe, D. Y., & Nasrun, A. (2024). Peramalan Jumlah Wisatawan Kabupaten Belitung Menggunakan Simulasi Monte Carlo. Euler : Jurnal Ilmiah Matematika, Sains Dan Teknologi, 12(1), 57–62. https://doi.org/10.37905/euler.v12i1.25153
Marisa, La Pimpi, & Alfian. (2025). Analisis Metode Seasonal Autoregressive Integrated Moving Average (Sarima) Dan Penerapannya Untuk Meramalkan Penjualan Motor Yamaha Di Indonesia. Jurnal Matematika Komputasi Dan Statistika, 5(1), 848–856. https://doi.org/10.33772/jmks.v5i1.117
Melyani, C. A., Nurtsabita, A., Shafa, G. Z., & Widodo, E. (2021). Peramalan Inflasi Di Indonesia Menggunakan Metode Autoregressive Moving Average ( ARMA ). 4(2), 67–74.
Nurashila, S. S., Hamami, F., & Kusumasari, T. F. (2023). Perbandingan kinerja algoritma recurrent neural network (rnn) dan long short-term memory (lstm): studi kasus prediksi kemacetan lalu lintas jaringan pt xyz. 8(3), 864–877.
Riski, G., Asido, V., & Panggabean, E. (2024). Penerapan Jaringan Syaraf Tiruan Dalam Memprediksi Tingkat Jumlah Perjalanan Wisatawan Nusantara Menurut Provinsi Tujuan Menggunakan Algoritma Backpropagation Conjugate Gradient. Jurnal JISIILKOM (Jurnal Inovasi Sistem Informasi & Ilmu Komputer), 2(1), 3025–4868.
Sugiartawan, P., Aan, A., Permana, J., & Iman, P. (2018). Forecasting Kunjungan Wisatawan Dengan Long Short Term Memory ( LSTM ). 1(1).
Syaifudin, A., & Hapsoro, H. W. (2025). IMPLEMENTASI EXPLORATORY DATA ANALYSIS UNTUK ANALISIS. XX(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Muhammad Irfan Hidayat, Mei Dita Kumala

This work is licensed under a Creative Commons Attribution 4.0 International License.
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
License and Copyright Agreement
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.












