An Analytical Solution of the Generalized Heat Equation Using the Offset Fractional Fourier Transform

Authors

  • Nasrullah Bachtiar Department of Actuarial Sciences, Institut Teknologi Sumatera, Lampung, Indonesia
  • St. Nurhilmah Busrah Department of Mathematics, Universitas Negeri Makassar, Makassar, Indonesia
  • Fitriyani Syamsuddin Department of Actuarial Sciences, Universitas Muhammadiyah Kolaka Utara, Kolaka Utara, Indonesia
  • Wahyuni Ekasasmita Department of Actuarial Sciences, Institut Teknologi Bacharuddin Jusuf Habibie, Parepare, Indonesia

DOI:

https://doi.org/10.30605/proximal.v8i4.6872

Keywords:

Offset fractional Fourier transform, Generalized heat equation

Abstract

In the present work, the main objective is to explore the solution of generalized heat using the offset fractional Fourier transform. The offset fractional Fourier transform is introduced, related theorems and essential properties are collected. Some examples are presented to illustrate the effectiveness and efficiency of the proposed method.

Downloads

Download data is not yet available.

References

Almeida, L. B. (2002). The fractional Fourier transform and time–frequency representations. IEEE Transactions on Signal Processing, 42(11), 3084–3091. DOI: https://doi.org/10.1109/78.330368

Anh, P. K., Castro, L. P., Thao, P. T., & Tuan, N. M. (2017). Two new convolutions for the fractional Fourier transform. Wireless Personal Communications, 92(2), 623–637. DOI: https://doi.org/10.1007/s11277-016-3567-3

Asmar, N. H. (2016). Partial differential equations with Fourier series and boundary value problems. Courier Dover Publications.

Bahri, M., & Abdul Karim, S. A. (2023). Fractional Fourier transform: Main properties and inequalities. Mathematics, 11(5), 1234. DOI: https://doi.org/10.3390/math11051234

Bahri, M., & Ashino, R. (2020). Solving generalized wave and heat equations using linear canonical transform and sampling formulae. Abstract and Applied Analysis, 2020(1), 1273194. Hindawi. DOI: https://doi.org/10.1155/2020/1273194

Bahri, M., & Ashino, R. (2022). Fractional Fourier transform: Duality, correlation theorem and applications. In 2022 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) (pp. 1–6). IEEE. DOI: https://doi.org/10.1109/ICWAPR56446.2022.9947156

Benedicks, M. (1985). Fourier transforms of functions supported on sets of finite Lebesgue measure. Journal of Mathematical Analysis and Applications, 106(1), 180–183. DOI: https://doi.org/10.1016/0022-247X(85)90140-4

Bernardo, L. M., & Soares, O. D. (1994). Fractional Fourier transforms and imaging. Journal of the Optical Society of America A, 11(10), 2622–2626. DOI: https://doi.org/10.1364/JOSAA.11.002622

Chen, W., Fu, Z., Grafakos, L., & Wu, Y. (2021). Fractional Fourier transforms on Lp and applications. Applied and Computational Harmonic Analysis, 55, 71–96. DOI: https://doi.org/10.1016/j.acha.2021.04.004

D. Mendlovich, & Ozaktas, H. M. (1993). Fractional Fourier transforms and their optical implementation. Journal of the Optical Society of America, 10, 1875–1881. DOI: https://doi.org/10.1364/JOSAA.10.001875

Kutay, A., Ozaktas, H. M., Ankan, O., & Onural, L. (1997). Optimal filtering in fractional Fourier domains. IEEE Transactions on Signal Processing, 45(5), 1129–1143. DOI: https://doi.org/10.1109/78.575688

Liu, S., Ren, H., Zhang, J., & Zhang, X. (1997). Image-scaling problem in the optical fractional Fourier transform. Applied Optics, 36(23), 5671–5674. DOI: https://doi.org/10.1364/AO.36.005671

McBride, A. C., & Kerr, F. H. (1987). On Namias’s fractional Fourier transforms. IMA Journal of Applied Mathematics, 39(2), 159–175. DOI: https://doi.org/10.1093/imamat/39.2.159

Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics. IMA Journal of Applied Mathematics, 25(3), 241–265. DOI: https://doi.org/10.1093/imamat/25.3.241

Ozaktas, H. M., & Aytür, O. (1995). Fractional Fourier domains. Signal Processing, 46(1), 119–124. DOI: https://doi.org/10.1016/0165-1684(95)00076-P

Ozaktas, H. M., & Kutay, M. A. (2001, September). The fractional Fourier transform. In 2001 European Control Conference (ECC) (pp. 1477–1483). IEEE. DOI: https://doi.org/10.23919/ECC.2001.7076127

Pei, S. C. (2001). Two-dimensional affine generalized fractional Fourier transform. IEEE Transactions on Signal Processing, 49(4), 878–897. DOI: https://doi.org/10.1109/78.912931

Prasad, A., Manna, S., Mahato, A., & Singh, V. K. (2014). The generalized continuous wavelet transform associated with the fractional Fourier transform. Journal of Computational and Applied Mathematics, 259, 660–671. DOI: https://doi.org/10.1016/j.cam.2013.04.016

Qiu, F., Liu, Z., Liu, R., Quan, X., Tao, C., & Wang, Y. (2019). Fluid flow signals processing based on fractional Fourier transform in a stirred tank reactor. ISA Transactions, 90, 268–277. DOI: https://doi.org/10.1016/j.isatra.2019.01.004

Sahin, A., Kutay, M. A., & Ozaktas, H. M. (1998). Nonseparable two-dimensional fractional Fourier transform. Applied Optics, 37(23), 5444–5453. DOI: https://doi.org/10.1364/AO.37.005444

Shi, J., Sha, X., Song, X., & Zhang, N. (2014). Generalized convolution theorem associated with fractional Fourier transform. Wireless Communications and Mobile Computing, 14(13), 1340–1351. DOI: https://doi.org/10.1002/wcm.2254

X. Guanlei, W. Xiatong, & X. Xiaogang. (2010). Novel uncertainty relations associated with fractional Fourier transform. Chinese Physics B, 19(1). DOI: https://doi.org/10.1088/1674-1056/19/1/014203

Zayed, A. I. (1998). Fractional Fourier transform of generalized functions. Integral Transforms and Special Functions, 7(3–4), 299–312. DOI: https://doi.org/10.1080/10652469808819206

Zayed, A. I. (2002). A convolution and product theorem for the fractional Fourier transform. IEEE Signal Processing Letters, 5(4), 101–103. DOI: https://doi.org/10.1109/97.664179

Zayed, A. I. (2002). On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Processing Letters, 3(12), 310–311. DOI: https://doi.org/10.1109/97.544785

Zayed, A. I. (2018). Two-dimensional fractional Fourier transform and some of its properties. Integral Transforms and Special Functions, 29(7), 553–570. DOI: https://doi.org/10.1080/10652469.2018.1471689

Downloads

Published

2025-10-12

How to Cite

Nasrullah Bachtiar, Busrah, S. N., Fitriyani Syamsuddin, & Wahyuni Ekasasmita. (2025). An Analytical Solution of the Generalized Heat Equation Using the Offset Fractional Fourier Transform. Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 8(4), 1021–1031. https://doi.org/10.30605/proximal.v8i4.6872