Local Metric Dimension of the Line Graph of a Generalized Petersen Graph

Authors

  • Nur Fahri Tadjuddin Universitas Sulawesi Barat

DOI:

https://doi.org/10.30605/proximal.v8i1.4707

Keywords:

Local metric dimension, Line graph, Generalized Petersen Graph

Abstract

Let G be a graph that has a vertex set V(G) and an edge set E(G). Let W={w_1,w_2,…w_k} be a subset of V(G). The representation of a vertex v∈V(G) with respect to W, denoted by r(v|W), is defined as k-vector (d(v,w_1 ),d(v,w_2 ), …, d(v,w_k )). A set W is called a local resolving set of G if r(u│W)≠r(v│W)  for every two adjacent vertices u,v∈V(G). The smallest cardinality of all local resolving set in G is called the local metric dimension of G, denoted by lmd(G). The local resolving set of G with cardinality  lmd⁡(G)  is called a local basis of G. In this paper, we determine the local metric dimension of the line graph of generalized Petersen graph P_(n,1).

Downloads

Download data is not yet available.

References

F, F. V, & Jude Annie Cynthia, V. (2017). Local Metric Dimension of Families of Certain Graphs. Journal of Combinatorics, Information & System Sciences, 42(1), 179–186.

Fitriani, D., Rarasati, A., Saputro, S. W., & Baskoro, E. T. (2022). The local metric dimension of split and unicyclic graphs. Indonesian Journal of Combinatorics, 6(1), 50. https://doi.org/10.19184/ijc.2022.6.1.3 DOI: https://doi.org/10.19184/ijc.2022.6.1.3

Marsidi, Dafik, Agustin, I. H., & Alfarisi, R. (2016). On The Local Metric Dimension of Line Graph of Special Graph. CAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI, 4(3), 125–130. DOI: https://doi.org/10.18860/ca.v4i3.3694

Okamoto, F., Phinezy, B., & Zhang, P. (2010). The local metric dimension of a graph. Mathematica Bohemica, 135(3), 239–255. https://doi.org/10.21136/mb.2010.140702 DOI: https://doi.org/10.21136/MB.2010.140702

Slater, P. J. (1975). Leaves of trees. Proc. 6 Th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 14, 549–559.

Solekhah, R. A., & Kusmayadi, T. A. (2018). On the local metric dimension of t-fold wheel, Pn o Km, and generalized fan. Indonesian Journal of Combinatorics, 2(2), 88. https://doi.org/10.19184/ijc.2018.2.2.4 DOI: https://doi.org/10.19184/ijc.2018.2.2.4

Watkins, M. E. (1969). A theorem on tait colorings with an application to the generalized Petersen graphs. Journal of Combinatorial Theory, 6(2), 152–164. https://doi.org/10.1016/S0021-9800(69)80116-X DOI: https://doi.org/10.1016/S0021-9800(69)80116-X

Downloads

Published

2024-10-21

How to Cite

Tadjuddin, N. F. (2024). Local Metric Dimension of the Line Graph of a Generalized Petersen Graph . Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 8(1), 12–17. https://doi.org/10.30605/proximal.v8i1.4707