Pemodelan Regresi Spline Truncated Birespon pada Inflasi dan PDRB Sumatera Utara

Authors

  • Atika Mayang Sari Universitas Islam Negeri Sumatera Utara
  • Sutarman Sutarman Universitas Sumatera Utara
  • Fibri Rakhmawati Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.30605/proximal.v7i1.3652

Keywords:

Model regresi, Spline Truncated, Birespon, Titik Knot, GCV

Abstract

A Nonparametric regression with a truncated biresponse spline approach is a good method in solving the problem of unknown shape of the regression curve. Truncated splines provide high flexibility in estimating curves that have data patterns that tend to change at certain intervals and do not require classic assumption tests. The purpose of this study was to obtain the best biresponse truncated spline regression model for North Sumatra's inflation and GRDP. This study uses qualitative methods and uses secondary data obtained from the Central Bureau of Statistics of North Sumatra. Selection of the best model is determined based on the optimal knot point using the minimum GCV value criteria. The research results obtained are the best spline model with 3 knot points with an MSE value of 1.6028 and a minimum GCV value of 0.0452. The value of response 1 is 14.64% and response 2 is 61.85%. This means that the ability of the predictor variable to explain the variance of the response variable is 14.64% and the remaining 61.85% is influenced by other factors.

Downloads

Download data is not yet available.

References

Hardle, W. (1990). Applied Nonparametric Regression. Cambridge University Press. DOI: https://doi.org/10.1017/CCOL0521382483

Lestari, B., Chamidah, N., & Saifudin, T. (2018). Estimasi Fungsi Regresi Dalam Model Regresi Nonparametrik Birespon Menggunakan Estimator Smoothing Spline dan Estimator Kernel. Jurnal Matematika Statistika Dan Komputasi, 15(2), 20. https://doi.org/10.20956/jmsk.v15i2.5710 DOI: https://doi.org/10.20956/jmsk.v15i2.5565

Nurdiani, N., Herrhyanto, N., & Dasari, D. (2017). Regresi Nonparametrik Birespon Spline. Jurnal EurekaMatika, 5(1), 106–121.

Pratiwi, L. P. S. (2017). Pemodelan Spline Truncated dalam Regresi Nonparametrik Birespon. Konferensi Nasional Sistem & Informatika, 441–445.

Rahmawati, R. D., Suparti, & Prahutama, A. (2019). Pemodelan Inflasi dan Indeks Harga Saham Gabungan Menggunakan Regresi Nonparametrik Birespon Spline Truncated Dengan Pembobot Invers Matriks Varians-Kovariansi Error Respon. Statistika, 7(1), 29–38.

Simanungkalit, E. F. B. (2020). Pengaruh Inflasi Terhadap Pertumbuhan Ekonomi di Indonesia. Journal of Management, 13(3), 327–340. DOI: https://doi.org/10.35508/jom.v13i3.3311

Suparti, Prahutama, A., Rusgiyono, A., & Sudargo. (2019). Modeling central java inflation and grdp rate using spline truncated birespon regression and birespon linear model 1. Media Statistika, 12(2), 129–139. https://doi.org/10.14710/medstat.12.2.129-139. DOI: https://doi.org/10.14710/medstat.12.2.129-139

Syisliawati, Wibowo, W., & Budiantara, I. N. (2016). Regression Spline Truncated Curve in Nonparametric Regression. PROCEEDING OF 3RD INTERNATIONAL CPNFERENCE RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE, May, 16–17.

Weley, I. R., Kumenaung, A. G., Sumual, J. I., & Ratulangi, U. S. (2019). Analisis pengaruh inflasi dan produk domestik regional bruto (pdrb) terhadap pendapatan asli daerah di kota manado. Fakultas Ekonomi Dan Bisnis Program Magister Ilmu Ekonomi Universitas Sam Ratulangi, 1–10. DOI: https://doi.org/10.35794/jpekd.16457.19.3.2017

Downloads

Published

2024-05-03

How to Cite

Sari, A. M., Sutarman, S., & Rakhmawati, F. (2024). Pemodelan Regresi Spline Truncated Birespon pada Inflasi dan PDRB Sumatera Utara. Proximal: Jurnal Penelitian Matematika Dan Pendidikan Matematika, 7(1), 355–376. https://doi.org/10.30605/proximal.v7i1.3652