Perbandingan Penggerombolan Tingkat Pencemaran Udara dengan K- Medoid dan CLARA berdasarkan Indeks Kualitas Udara (IKU) di Provinsi Sulawesi Selatan
DOI:
https://doi.org/10.30605/proximal.v7i1.3074Keywords:
Cluster Analysis, K-Medoid, CLARA, IKUAbstract
Analisis statistika multivariat yang pada akhirnya menghasilkan sejumlah gerombol. Pengelompokan dilakukan pada objek/pengamatan (baris) dalam data yang memiliki kemiripan sangat besar dengan objek/pengamatan lainnya dalam satu gerombol. Kemiripan tersebut diukur menggunakan jarak euclidean. Analisis gerombol terbagi menjadi dua yaitu hierarki dan non-hierarki. Penelitian ini menerapkan analisis gerombol non-hierarki yaitu metode k-medoid untuk menggerombolkan kabupaten/kota beserta empat sektornya yaitu transportasi, industri/agro industri, pemukiman, perkantoran/komersial di Provinsi Sulawesi Selatan berdasarkan indikator penyusun nilai Indeks Kualitas Udara (IKU) tahun 2019 dan 2020. IKU ditetapkan sebagai salah satu instrumen untuk mengukur tingkat pencemaran udara di suatu wilayah, baik secara nasional maupun di Provinsi dan Kabupaten/Kota. IKU dikategorikan berdasarkan enam status Indeks Kualitas Lingkungan Hidup (IKLH). Untuk mendapatkan hasil gerombol dari metode k-medoid dan CLARA maka dilakukan penggerombolan berdasarkan perhitungan nilai IKU yaitu k = 6. Peneliti menggunakan confusion matrix untuk membandingkan hasil gerombol berdasar hasil gerombol metode k-medoid dan CLARA.. Dari penelitian yang dilakukan diperoleh hasil algoritma k-medoid untuk data 2019 maupun 2020 memiliki presentase Accuracy, Precision dan Recall lebih tinggi dibanding metode CLARA. Hasil tersebut membuktikan bahwa metode k-medoid mempunyai performa lebih baik bila dibandingkan dengan CLARA, karena mempunyai tinngkat akurasi dan recall lebih tinggi bila dibandingkan dengan CLARA. Itu disebabkan karena CLARA tergantung pada pemilihan dan ukuran sampel.
Downloads
References
Ahmad. Z., Irwan., dan Imanuel. A. S., (2022). Penerapan K-Means Clustering dalam Pengelompokan Data (Studi Kasus Profil Mahasiswa Matematika FMIPA UNM). Journal of Mathematics, Computations, and Statistics. 163–176. https://doi.org/10.35580/jmathcos.v5i2.38820 DOI: https://doi.org/10.35580/jmathcos.v5i2.38820
Cahyadahrena, M. B. (2015). Deteksi Pencilan Pada Data Titik Panas Menggunakan Clustering Berbasis Medoids. Skripsi: Institut Pertanian Bogor.
Gujarati, D. N., C.Porter, D., & Mangunsong, R. C. (2012). Dasar-dasar Ekonometrika Buku 2 Edisi 5 (Basic Econometrics) / Damodar N.Gujarati. In Jakarta : Salemba Empat (5th ed., Vol. 28, Issue 3). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2004.12.019 DOI: https://doi.org/10.1016/j.eswa.2004.12.019
Hair Jr, J. F., Black Barry J, W. C., & Anderson, B. R. E. (2010). Multivariate Data Analysis Seventh Edition. Pearson. https://doi.org/10.4324/9781351269360 DOI: https://doi.org/10.4324/9781351269360
Halkidi, M., Batistakis, Y., & Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2–3), 107–145. https://doi.org/10.1023/A:1012801612483 DOI: https://doi.org/10.1023/A:1012801612483
Herawatie, D., & Purbandini, E. W. (2014). Perbandingan Algoritma Pengelompokan Non-Hierarki untuk Dataset Dokumen. Seminar Nasional Aplikasi Teknologi Informasi (SNATI) Yogyakarta, 11–16.
Irwan., Maya, S. W., Sulaiman., Andi. M. M., (2022). Analisis K-Medoid Untuk Pemetaan Tingkat Pencemaran Udara di Provinsi Sulawesi Selatan. Journal of Mathematics, Computations, and Statistics, 106 – 120. https://doi.org/10.35580/jmathcos.v5i2.38215 DOI: https://doi.org/10.35580/jmathcos.v5i2.38215
Irwan., Sahlan, S., dan Asmelia, P. A., (2022). Pengelompokan Jenis Penerimaan Pajak di Kota Makassar Menggunakan Fuzzy Clustering. EULER: Jurnal Ilmiah Matematika, Sains dan Teknologi. 98-102. https://doi.org/10.34312/euler.v10i1.14225 DOI: https://doi.org/10.34312/euler.v10i1.14225
Johnson, R. A., & Wichern, D. W. (2007). Applied Multivariate Statistical Analysis 6th edition.pdf. Prentice Hall.
Kaufman, L., & Rousseeuw, P. J. (1990). Finding Group in Data. John Willey & Sons, Inc. DOI: https://doi.org/10.1002/9780470316801
Laporan Dinas Lingkungan, H. D. (2020). Laporan IKLH 2020 Dinas Lingkungan Hidup dan Kehutanan DIY.
Masito, A. (2018). Risk Assessment Ambient Air Quality (NO2 And SO2) and The Respiratory Disorders to Communities in the Kalianak Area of Surabaya. Jurnal Kesehatan Lingkungan, 10(4), 394. https://doi.org/10.20473/jkl.v10i4.2018.394-401 DOI: https://doi.org/10.20473/jkl.v10i4.2018.394-401
Rifa, I. H., Pratiwi, H., & Respatiwulan. (2019). Implementasi algoritma clara untuk data gempa bumi di indonesia 1 1,2,3. 2006, 161–166.
Riyanto, U. (2019). Analisis Perbandingan Algoritma Naive Bayes Dan Support Vector Machine Dalam Mengklasifikasikan Jumlah Pembaca Artikel Online. JIKA (Jurnal Informatika), 2(2), 62–72. https://doi.org/10.31000/.v2i2.1521 DOI: https://doi.org/10.31000/.v2i2.1521
Sihombing, R. E., Rachmatin, D., & Dahlan, J. A. (2019). Program Aplikasi Bahasa R Untuk Pengelompokan Objek Menggunakan Metode K-medoids Clustering. Program Aplikasi Bahasa R Untuk Pengelompokan Objek Menggunakan Metode K-medoids Clustering, 7(1), 58–79.
Soemarwoto, O. (1992). Analis Dampak Lingkungan. In GMU Press (Vol. 8, Issue 2, pp. 428–435). GMU Press.
Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427–437. https://doi.org/10.1016/j.ipm.2009.03.002 DOI: https://doi.org/10.1016/j.ipm.2009.03.002
Supranto, J. (2004). Analisis multivariat : Arti dan Interpretasi. Jakarta: Rineka Cipta.
Suwardi, A., Uca., Irwan., Rahmat H. S., dan Zulkifli R., (2022). Using k-Means and Self Organizing Maps in Clustering Air Pollution Distribution in Makassar City, Indonesia. Jambura Journal Of Mathematics. 167 – 176. https://doi.org/10.34312/jjom.v4i1.11883 DOI: https://doi.org/10.34312/jjom.v4i1.11883
Suwardi, A., Irwan., Rahmat. H. S. dan Zulkifli. R., (2022). Algorithm K-Prototype for Clustering The Earthquake on Sulawesi Island. Jurnal Varian. 189-195. https://doi.org/10.30812/varian.v5i2.1908 DOI: https://doi.org/10.30812/varian.v5i2.1908
Downloads
Published
How to Cite
Issue
Section
License
In submitting the manuscript to the journal, the authors certify that:
- They are authorized by their co-authors to enter into these arrangements.
- The work described has not been formally published before, except in the form of an abstract or as part of a published lecture, review, thesis, or overlay journal.
- That it is not under consideration for publication elsewhere,
- That its publication has been approved by all the author(s) and by the responsible authorities – tacitly or explicitly – of the institutes where the work has been carried out.
- They secure the right to reproduce any material that has already been published or copyrighted elsewhere.
- They agree to the following license and copyright agreement.
License and Copyright Agreement
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.