Peran Si terhadap Dinamika Mikroba Tanah, Nitrogen, dan Fosfor pada Berbagai Kondisi Media Tanam

Authors

  • Wahyudi Muhammad Iwan Agriculture Faculty of Muhammadiyah Jember University
  • Hasbi Hudaini Agriculture Faculty of Muhammadiyah University of Jember
  • Tripama Bagus Agriculture Faculty of Muhammadiyah University of Jember
  • Prawitasari Saptya Agriculture Faculty of Muhammadiyah University of Jember
  • Oktarina Oktarina Agriculture Faculty of Muhammadiyah University of Jember
  • Suroso Bejo

DOI:

https://doi.org/10.30605/biogenerasi.v10i3.6829

Abstract

Abstract

This study aims to analyze the effect of silicon (Si) application on soil microbial populations, particularly bacteria, nitrogen (N) and phosphorus (P) uptake under various growing media conditions, and its implications for corn (Zea mays L.) growth. The experiment used a completely randomized factorial design with two factors: Si concentration (0, 5, 10, and 15% SiO₂) and type of soil condition (standard soil, high-N soil, P-deficient soil, and high-organic-matter soil). The results showed that Si fertilizer application increased bacterial populations by 18.87% in the control medium, 134.6% in high-N soil, 134.7% in P-deficient soil, and 20% in high-organic matter soil, while the application of 15% Si in P-deficient soil increased P uptake by 53.7% compared to without Si, and in high-N soil, the application of 15% Si reduced tissue N content but increased its utilization efficiency. The increase in P uptake occurred through ionic competition between SiO₄⁴⁻ and PO₄³⁻ at the uptake site, while the decrease in tissue N content indicated Si's role in optimizing N utilization. Leaf Si content was relatively higher in all treated media compared to the control, followed by a tendency toward increased plant dry weight and stomatal number. These results indicate that Si application under nutrient stress conditions can balance N and P availability and improve physiological parameters supporting growth.

 

Downloads

Download data is not yet available.

References

Daftar Pustaka

Badri, D. V., & Vivanco, J. M. 2009. Regulation and function of root exudates. Plant, Cell & Environment, 32(6), 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x DOI: https://doi.org/10.1111/j.1365-3040.2009.01926.x

Bakhat, H. F., et al. 2018. Silicon: A sustainable approach to improve nitrogen efficiency in crop plants. Plant Physiology and Biochemistry, 125, 262–276. https://doi.org/10.1016/j.plaphy.2018.02.011 DOI: https://doi.org/10.1016/j.plaphy.2018.02.011

BPS. 2018. Statistik Tanaman Pangan 2018. Badan Pusat Statistik, Jakarta.

Chanchal, D., et al. 2016. Silicon in agriculture: from theory to practice. Advances in Plants & Agriculture Research, 3(2), 93–99.

Djajadi. 2013. Silikon dalam tanah dan pengaruhnya terhadap pertumbuhan tanaman. Jurnal Tanah Tropika, 18(3), 155–162.

Epstein, E. 1999. Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 641–664. DOI: https://doi.org/10.1146/annurev.arplant.50.1.641

Guntzer, F., Keller, C., & Meunier, J. D. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201–213. DOI: https://doi.org/10.1007/s13593-011-0039-8

Israel, D. W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation. Plant Physiology, 84(3), 835–840. DOI: https://doi.org/10.1104/pp.84.3.835

Liang, Y., et al. 2015. Effects of silicon on phosphorus loss from soil in surface runoff. Geoderma, 239–240, 1–8.

Ma, J. F., & Yamaji, N. 2015. A cooperative system of silicon transport in plants. Trends in Plant Science, 20(7), 435–442. DOI: https://doi.org/10.1016/j.tplants.2015.04.007

Matichenkov, V. V., & Calvert, D. V. 2002. Silicon as a beneficial element for sugarcane. Journal of the American Society of Sugar Cane Technologists, 22, 21–30.

Meena, V. D., et al. 2014. Silicon in mitigation of drought stress in plants. Plant Physiology and Biochemistry, 80, 268–277. DOI: https://doi.org/10.1016/j.plaphy.2014.04.014

Mitani, N., & Ma, J. F. 2005. Uptake system of silicon in different plant species. Journal of Experimental Botany, 56(414), 1255–1261. DOI: https://doi.org/10.1093/jxb/eri121

Pulung, M. A. 2007. Pengaruh pemberian silikat terhadap efisiensi penggunaan nitrogen pada padi sawah. Jurnal Ilmu Tanah dan Lingkungan, 9(1), 35–41.

Ranganathan, S., et al. 2006. The role of silicon in agriculture. Agriculture Reviews, 27(3), 211–220.

Raun, W. R., & Johnson, G. V. 1999. Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91(3), 357–363. DOI: https://doi.org/10.2134/agronj1999.00021962009100030001x

Rodríguez, H., & Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4-5), 319–339. DOI: https://doi.org/10.1016/S0734-9750(99)00014-2

Roesmarkam, S., & Yuwono, N. W. 2002. Ilmu Kesuburan Tanah. Kanisius, Yogyakarta.

Vasanthi, N., et al. 2014. Silicon fertilization on growth, yield, and nutrient uptake of rice. International Journal of Current Microbiology and Applied Sciences, 3(10), 1–6.

Vashanti, M. 2012. Silicon in soil and plants: A review. Journal of the Indian Society of Soil Science, 60(2), 151–158.

Yoshida, S., et al. 1986. Laboratory Manual for Physiological Studies of Rice. IRRI, Los Baños, Philippines.

Zahran, H. H. 2001. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiology and Molecular Biology Reviews, 65(4), 968–989. DOI: https://doi.org/10.1128/MMBR.63.4.968-989.1999

Downloads

Published

2025-09-06

How to Cite

Muhammad Iwan, W., Hudaini , H., Bagus , T., Saptya , P., Oktarina, O., & Bejo, S. (2025). Peran Si terhadap Dinamika Mikroba Tanah, Nitrogen, dan Fosfor pada Berbagai Kondisi Media Tanam. Jurnal Biogenerasi, 10(3), 1780–1789. https://doi.org/10.30605/biogenerasi.v10i3.6829