Pengembangan dan Validitas Instrumen Metakognitif Siswa Pada Pembelajaran Fisika SMA

Main Article Content

Dian Purnama Ilahi
Festiyed
Lisa Utami
Arista Ratih

Abstract

Penelitian ini bertujuan untuk menghasilkan instrumen metakognitif yang valid dalam pembelajaran fisika di SMA. Penelitian ini menggunakan metode penelitian dan pengembangan model 4-D yang meliputi tahapan pendefinisian (define), perancangan (design), pengembangan (development), dan penyebaran (disseminate). Tahap pendefinisian bertujuan untuk menetapkan persyaratan pembelajaran dengan menganalisis tujuan pembelajaran dari materi yang dikembangkan dalam instrumen metakognitif. Tahap perancangan melibatkan pembuatan rancangan instrumen keterampilan metakognitif yang sesuai dengan capaian pembelajaran, tujuan pembelajaran, dan alur tujuan pembelajaran pada materi gelombang bunyi, serta merinci kisi-kisi instrumen metakognitif menjadi instrumen tes berupa 10 soal essay dan instrumen non-tes berupa kuesioner Metacognitive Awareness Inventory (MAI). Tahap pengembangan mencakup uji validitas yang meliputi validitas isi, validitas konstruk, dan validitas bahasa untuk instrumen tes essay dan kuesioner. Validasi oleh kelima validator untuk kedua jenis instrumen ini berkisar antara 89,2% sampai dengan 95,52% yang berada pada kategori sangat valid sehingga dapat digunakan dalam pembelajaran. Hasil analisis pengembangan dan validitas instrument ini diharapkan dapat dijadikan sebagai contoh pengembangan instrumen untuk menilai metakognitif siswa pada pembelajaran fisika SMA dan memberikan masukan pada bidang pendidikan pada umumnya.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Purnama Ilahi, D., Festiyed, Lisa Utami, & Arista Ratih. (2024). Pengembangan dan Validitas Instrumen Metakognitif Siswa Pada Pembelajaran Fisika SMA. Jurnal Biogenerasi, 9(2), 1087 - 1098. https://doi.org/10.30605/biogenerasi.v9i2.3903
Section
Articles

References

Banna, M. Al, Redha, N., Abdulla, F., Nair, B. P., & Donnellan, C. (2015). Metacognitive Function Poststroke: A Review of Definition and Assessment. Journal of Neurology Neurosurgery & Psychiatry, jnnp-2015-310305. https://doi.org/10.1136/jnnp-2015-310305
Bogdanović, I., Obadović, D. Ž., Cvjetićanin, S., Segedinac, M., & Budić, S. (2015). Students’ Metacognitive Awareness and Physics Learning Efficiency and Correlation Between Them. European Journal of Physics Education, 6(2). https://doi.org/10.20308/ejpe.96231
Chen, W., & Hapgood, S. (2019). Understanding Knowledge, Participation and Learning in L2 Collaborative Writing: A Metacognitive Theory Perspective. Language Teaching Research, 25(2), 256–281. https://doi.org/10.1177/1362168819837560
Chen, Z., Zhang, Y., Bai, Q., Chen, B., Zhu, Y., & Xiong, Y. (2017). A PBL teaching model based on mobile devices to improve primary school students’ meta-cognitive awareness and learning achievement. Proceedings - 6th International Conference of Educational Innovation Through Technology, EITT 2017, 2018-March, 81–86. https://doi.org/10.1109/EITT.2017.27
Cooper, M. M., & Sandí-Ureña, S. (2009). Design and Validation of an Instrument to Assess Metacognitive Skillfulness in Chemistry Problem Solving. Journal of Chemical Education, 86(2), 240. https://doi.org/10.1021/ed086p240
Fernandez-Duque, D., Baird, J. A., & Posner, M. I. (2000). Awareness and Metacognition. Consciousness and Cognition, 9(2), 324–326. https://doi.org/10.1006/ccog.2000.0449
Glava, A. (2017). Metadiscourse Markers in Science Schoolbooks as Facilitators for Metacognitive Regulation of Learning. https://doi.org/10.15405/epsbs.2017.07.03.32
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809
Hasna, N. N., & Dewi, N. R. (2022). The Integrated E-LKPD Development With SQ4R Learning Strategy to Train Students’ Metacognition Ability. Tadris Jurnal Keguruan Dan Ilmu Tarbiyah, 7(2), 221–239. https://doi.org/10.24042/tadris.v7i2.11226
Huang, Y., & Tsapali, M. (2022). The Relationship Between Students’ Metacognition and Graphic Organisers: A Scoping Review. https://doi.org/10.21203/rs.3.rs-2120141/v1
Iyamu, C. O. (2020). Gender Issues in Achievement and Retention Among Secondary School Students Taught Thermal Energy Using Metacognitive Scaffolding Teaching Strategy. International Journal of Scientific Advances, 1(2). https://doi.org/10.51542/ijscia.v1i2.8
Jacobse, A., & Harskamp, E. (2012). Towards Efficient Measurement of Metacognition in Mathematical Problem Solving. Metacognition and Learning, 7(2), 133–149. https://doi.org/10.1007/s11409-012-9088-x
Jia, X., Li, W., & Cao, L. (2019). The Role of Metacognitive Components in Creative Thinking. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.02404
Jokić, C. S., & Whitebread, D. (2010). The Role of Self-Regulatory and Metacognitive Competence in the Motor Performance Difficulties of Children With Developmental Coordination Disorder: A Theoretical and Empirical Review. Educational Psychology Review, 23(1), 75–98. https://doi.org/10.1007/s10648-010-9148-1
Körhasan, N. D., Eryılmaz, A., & Erkoç, Ş. (2018). The Role of Metacognition in Students’ Mental Models of the Quantization. Science Education International, 29(3), 183–191. https://doi.org/10.33828/sei.v29.i3.6
Kusumawati, E., Budiyono, B., & Indriati, D. (2021). The Development of the Valid Test Instruments to Measure Metacognition Problem Solvers. https://doi.org/10.2991/assehr.k.211122.013
Lavi, R., Shwartz, G., & Dori, Y. J. (2019). Metacognition in Chemistry Education: A Literature Review. Israel Journal of Chemistry, 59(6–7), 583–597. https://doi.org/10.1002/ijch.201800087
Lysaker, P. H., Kukla, M., Vohs, J. L., Martin, A. M. S., Buck, K. D., & Ohayon, I. H. (2019). Metacognition and Recovery in Schizophrenia: From Research to the Development of Metacognitive Reflection and Insight Therapy. Journal of Experimental Psychopathology, 10(1), 204380871881499. https://doi.org/10.1177/2043808718814992
Mahande, R. D., Darmawan, F. A., & Malago, J. D. (2022). Metacognitive Assessment Model for Student Project-Based Learning Through the Blended Learning Practice MOOCs. https://doi.org/10.5772/intechopen.98996
Masoodi, M. (2018). Importance of Promoting Metacognitive Awareness at University. Vocational Training Research and Realities, 29(1), 3–18. https://doi.org/10.2478/vtrr-2018-0002
Mazur, E. (1997). Peer Instruction: A User{\textquoteright}s Manual. Prentice Hall. /files/mazur/files/rep_0.pdf
McDermott, L. C. (1993). Guest Comment: How we teach and how students learn—A mismatch? American Journal of Physics, 61(4), 295–298. https://doi.org/10.1119/1.17258
Mota, A. R., Körhasan, N. D., Miller, K., & Mazur, E. (2019). Homework as a metacognitive tool in an undergraduate physics course. Physical Review Physics Education …. https://doi.org/10.1103/PhysRevPhysEducRes.15.010136
Negretti, R., & Kuteeva, M. (2011). Fostering Metacognitive Genre Awareness in L2 Academic Reading and Writing: A Case Study of Pre-Service English Teachers. Journal of Second Language Writing, 20(2), 95–110. https://doi.org/10.1016/j.jslw.2011.02.002
Prasetyo, Z. K. (2020). The Development of a Metacognition Instrument for College Students to Solve Physics Problems. International Journal of Instruction. https://eric.ed.gov/?id=EJ1239313
Ratnayake, A., Bansal, A., Wong, N., Saseetharan, T., Prompiengchai, S., Jenne, A., Thiagavel, J., & Ashok, A. (2024). All “Wrapped” Up in Reflection: Supporting Metacognitive Awareness to Promote Students’ Self-Regulated Learning. Journal of Microbiology and Biology Education, 25(1). https://doi.org/10.1128/jmbe.00103-23
Redish, E. F., & Burciaga, J. R. (2004). Teaching Physics with the Physics Suite. American Journal of Physics, 72(3), 414–414. https://doi.org/10.1119/1.1691552
Saaidin, N. (2020). The Influence Between Metacognition Practice, Students’ Learning Commitment and Academic Achievement of Matriculation Students in Physics. International Journal of Academic Research in Business and Social Sciences, 10(3). https://doi.org/10.6007/ijarbss/v10-i3/7351
Subali, B., Widayati, N. T., Sekarningtias, F. O., Wiyanto, W., Ellianawati, E., & Siswanto, S. (2022). Development of a Four-Tier Test With a Metacognitive Perspective Approach on the Topic of Newton’s Laws. Tadris Jurnal Keguruan Dan Ilmu Tarbiyah, 7(1), 25–34. https://doi.org/10.24042/tadris.v7i1.9615
Sugiyono (2019). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alphabet
Urban, K., & Urban, M. (2023). How Can We Measure Metacognition in Creative Problem-Solving? Standardization of the McPs Scale. https://doi.org/10.31234/osf.io/5y83h
Utomo, S., Mujiyanto, J., Rukmini, D., & Hartono, R. (2022). Developing and Validating the Metacognitive Awareness Speaking Questionnaire. https://doi.org/10.2991/assehr.k.220201.038
Vandergrift, L., Goh, C. C. M., Mareschal, C. J., & Tafaghodtari, M. H. (2006). The Metacognitive Awareness Listening Questionnaire: Development and Validation. Language Learning, 56(3), 431–462. https://doi.org/10.1111/j.1467-9922.2006.00373.x
Veenman, M. V. J., Hout-Wolters, B. H. A. M. van, & Afflerbach, P. (2006). Metacognition and Learning: Conceptual and Methodological Considerations. Metacognition and Learning, 1(1), 3–14. https://doi.org/10.1007/s11409-006-6893-0
Young, A. E., & Worrell, F. C. (2018). Comparing metacognition assessments of mathematics in academically talented students. Gifted Child Quarterly. https://doi.org/10.1177/0016986218755915
Sugiyono (2019). Metode Penelitian Kuantitatif, Kualitatif dan R&D. Bandung: Alphabet
Zhang, X., & Guo, M. (2020). Metacognition and Second Language Learning. https://doi.org/10.2991/assehr.k.200401.024
Στεφάνου, Γ., & Mpiontini, M.-H. (2017). Metacognitive Knowledge and Metacognitive Regulation in Self-Regulatory Learning Style, and in Its Effects on Performance Expectation and Subsequent Performance Across Diverse School Subjects. Psychology, 08(12), 1941–1975. https://doi.org/10.4236/psych.2017.812125