
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika 

ISSN 26158132 (cetak) 

ISSN 26157667 (online) 

     Halaman 104 dari 114 

https://doi.org/10.30605/proximal.v9i1.7851          Volume 9 Nomor 1, Tahun 2026 

PARAMETRIC REPRESENTATIONS OF SURFACES 
CONTAINING A ISOPHOTE CURVE IN 3-
DIMENSIONAL GALILEAN SPACE 
Şeyda Özel1, Mehmet Bektaş2 

Fırat University, Faculty of Science, Deparment of Mathematics, 23100, Elazığ, Turkey 
Email: s_demir2323@outlook.com1, mbektas@firat.edu.tr2 
Corresponding Author: Şeyda Özel email: s_demir2323@outlook.com 

Abstract. This paper investigates a family of defined surfaces that share a common isotope curve in 

three-dimensional Galilean space. By employing a given curve in this space with its Frenet frame, we derive 

characterizations of the surfaces and present illustrative examples where in the curve functions, as an isotope. 

Keywords: The isotope curve, The non-isotope curve, The isotope-asymptotic curve, 

Galilean 3-space. 

 Introduction 

         One practical method for analyzing and visualizing surfaces based on equal-intensity lines 

is to use the concept of isophote curves. Isophote curves can be considered a subset of surface-

defining curves, like geodesics or curvature lines, characterized by the constant-angle relation 

between their normals and a chosen fixed direction. In addition to its appeal, the isophote curve 

is widely employed in computer-graphics applications and remains a local point of 

contemporary research in geometry. 

    An isphote curve on a given surface is determined in two steps: First, compute the surface's 

normal vector field 𝑛(𝑠, 𝑡); then, trace the points on the surface that satisfy  
〈𝑛(𝑠, 𝑡), 𝑑〉

‖𝑛(𝑠, 𝑡)‖
= 𝑐𝑜𝑠𝛽, 

where 𝛽 denotes an angle constrained to the interval  0 < 𝛽 <
𝜋

2
. When the quantity 

〈𝑛(𝑠, 𝑡), 𝑑〉

‖𝑛(𝑠, 𝑡)‖
= 0 

evaluates to zero, given that 𝑑 it is the unit fixed vector, the isophote curve is referred to as a 

silhouette curve ( Doğan & Yaylı, 2015). Research on curves and their properties dates back to 

the earliest studies. Koenderink and van Doorn (1980) investigated image brightness contours, 

which correspond to isophote curves. Poeschl (1984) utilized isophote curves to identify 

geometric inconsistencies on free-form body designs. Sara (1994) investigated how a surface’s 

local shading behavior can be inferred from the characteristics of its curves. Grounded in the 

theory of surfaces, his work zeroed in on precisely gauging the tilt of the surface normal while 

also tackling the qualitative reconstruction of Gaussian curvature. In a study, Kim and Lee 

(2003) tackled the parameterization of isophote curves on both rotational and canal surfaces. 
By capitalizing on the insight that each of these shapes can be decomposed into a family of 

circles, they demonstrated that the normals, at points lying on any given circle. Takeuchi (2004) 

introduced the concept of a helix, defining it as a space curve whose principal normal lines 

consistently maintain a fixed angle with a chosen direction. In a study, Dogan (2012) examined 

isophote curves on timelike surfaces, within the Minkowski space Ε1
3. The problem of surface 

families sharing a line of curvature has been addressed in (Ergün, Bayram and Kasap, 2014; 

Ergün, Bayram and Kasap, 2015). Galilean geometry, derived from the Galilean principle of 
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relativity, forms a distinct branch of classical geometry (Yaglom, 2012). It turns out that 

Galilean geometry enjoys a wide array of practical applications in the physical sciences 

(Musielak & Fry, 2019). Curves and surfaces in Galilean geometry have been dealt with by 

many researchers (Aydın, Külahçı & Öğrenmiş, 2019; Dede, 2013; Diviak & Sipus et al., 2002). 

In surface theory and physics, geodesics play a critical role. A curve on the surface is called a 

geodesic if its geodesic curvature is identically zero. To put it another way, a curve's normal 

vector is always parallel to the surface's normal vector. Further research and observations on 

surfaces in 𝔾𝟑 have been reported. By definition, a line of curvature is a curve that lies on a 

surface and whose tangent direction aligns with the principal curvature direction at every point. 

An asymptotic condition appears when the binormal 𝐵(𝑠) of 𝛼(𝑠) and the regular 𝑛(𝑠, 𝑠0) of 

the surface become parallel at any location on 𝛼(𝑠). Moreover, additional studies on families 

of surfaces sharing asymptotic curves can be found in (Yoon, Yüzbaşı & Bektaş, 2017; Yüzbaşı, 

2016). Recent studies have shown growing interest in isophote curves and their geometric 

properties in non-Euclidean and Galilean spaces (Ali and Turgut, 2019; Celik and Onder, 2020; 

Ersoy and Tosun, 2021; Yoon, 2022). In addition, Körpınar and Demir (2018) investigated 

isophote curves on surfaces in non-Euclidean settings. Motivated by these works, we study 

isophote curves on admissible regular surfaces in Galilean 3-space. Despite the extensive 

literature on isophote curves in Euclidean and Minkowski geometries, similar investigations in 

Galilean 3-space are scarce. To the best of our knowledge, the problem of characterizing 

surfaces containing isophote curves, particularly timelike surfaces, has not been systematically 

addressed in the Galilean setting. This lack of results constitutes the main motivation of the 

present study. Accordingly, we aim to fill this gap by analyzing isophote curves in Galilean 3-

space and providing explicit parametric representations of surfaces that admit such curves. 

Although isophote curves have been extensively studied in Euclidean and Minkowski spaces, 

their characterization in Galilean 3-space remains largely unexplored. In particular, the 

behavior of isophote curves on timelike surfaces within the Galilean framework has not been 

adequately addressed. Motivated by this gap, the present study investigates parametric 

representations of surfaces containing an isophote curve in 3-dimensional Galilean space. By 

deploying the Frenet frame adapted to Galilean geometry, necessary and sufficient criteria are 

derived that determine when a given curve qualifies as an isophote, a non-isophote, or a 

silhouette curve. 

 Notations 

         𝔾𝟑 designates a Galilean space, the three-dimensional complex projective 𝑃3 , endowed 

with a distinguished real plane, 𝑤 of ideal planes a real line 𝑓 ⊂ 𝑤  that collects the ideal lines, 

and an ideal form 𝑤, 𝑓, 𝐼1, 𝐼2 from which the ideal elements  𝐼1and 𝐼2 emerge, both of which line 

of 𝑓. Vectors in the Galilean space are classified as either isotropic or non-isotropic.    

Definition 1. When the first component of a vector 𝑥 = (𝑥1, 𝑥2, 𝑥3) is non-zero (𝑥1 ≠ 0), the 

vector is called non-isotropic. Each unit isotropic vector can be expressed as 𝑥 = (1, 𝑥2, 𝑥3). If 

the leading entry vanishes 𝑥1 = 0, the vector is isotropic; otherwise, it remains non-isotropic. 

Definition 2. Let  𝑥 = (𝑥1, 𝑥2, 𝑥3) and 𝑦 = (𝑦1, 𝑦2, 𝑦3)  be vectors in  𝔾3, Galilean space. The 

Galilean scalar product of the two vectors is defined as 
〈𝑥, 𝑦〉 = {𝑥1𝑦1|𝑥1 ≠ 0} 

〈𝑥, 𝑦〉 = {𝑥2𝑦2 + 𝑥3𝑦3|𝑥1 = 0}. 
Definition 3. Let 𝑥 = (𝑥1, 𝑥2, 𝑥3) and 𝑦 = (𝑦, 𝑦2, 𝑦3) be vectors, in the Galilean space 𝔾3. The 

Galilean vector product between two vectors is given by 

𝑥 ∧ 𝑦 = |
0 𝑒2 𝑒3

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

| = (0, 𝑥3𝑦1 − 𝑥1𝑦3, 𝑥1𝑦2 − 𝑥2𝑦1). 
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Here 𝑒2 is the vector (0,1,0) while 𝑒3 is the vector (0,0,1). 
Consider a curve 𝛼(𝑠) in dimensional Galilean space with  the three-(𝛼 > 3) parametrised by 

the variable 𝑠. In coordinate form the curve is written as 𝛼(𝑠) = (𝑠, 𝑓(𝑠), 𝑔(𝑠)). Its curvature  

𝜅(𝑠) is obtained by taking the norm of the second-order derivatives of the transverse 

components: 

𝜅(𝑠) = √𝑓′′(𝑠)2 + 𝑔′′(𝑠)2. 
The torsion 𝜏(𝑠) is given by the triple product of the first three derivatives divided by the square 

of the curvature: 

𝜏(𝑠) =
det (𝛼′(𝑠), 𝛼′′(𝑠), 𝛼′′′(𝑠)

𝜅2(𝑠)
. 

Moreover, the curve fulfills its moving trihedron. 

 The tangent vector at the parameter 𝑠 is 𝑇(𝑠) = 𝛼′(𝑠) = (1, 𝑓′(𝑠), 𝑔′(𝑠)). The principal 

normal follows as 𝑁(𝑠) =
𝛼′′(𝑠)

𝜅(𝑠)
=

1

𝜅(𝑠)
(0, 𝑓′′(𝑠), 𝑔′′(𝑠)). The binormal orthogonal, to both 𝑇 

and 𝑁 is 𝐵(𝑠) =
1

𝜅(𝑠)
(0, −𝑔′′(𝑠), 𝑓′′(𝑠)). The curve 𝛼(𝑠) carries the tangent, binormal vectors, 

denoted by the ordered triple {𝑇, 𝑁, 𝐵}. In these terms, the Frenet–Serret formulas are 𝑇′ =
𝜅. 𝑁, 𝑁′ = 𝜏. 𝐵, 𝐵′ = −𝜏. 𝑁.  
Definition 4.  Assume that 𝑃(𝑠, 𝑡) is a surface, in the Galilean space  𝔾3. For parameters 𝑠, 𝑡 ∈
ℝ, the surface can be expressed by  

𝑃(𝑠, 𝑡) = 𝛼(𝑠) + 𝜆1(𝑠, 𝑡)𝑃1(𝑠, 𝑡) + 𝜆2(𝑠, 𝑡)𝑃2(𝑠, 𝑡) + 𝜆3(𝑠, 𝑡)𝑃3(𝑠, 𝑡). 
In this case, each of the component functions 𝑃1(𝑠, 𝑡), 𝑃2(𝑠, 𝑡), 𝑃3(𝑠, 𝑡) belongs to the class 𝐶3.  
Moreover, the surface carries a normal vector field, which we write as 𝑛(𝑠, 𝑡); here 𝑃𝑠 and 𝑃𝑡 

denote the partial derivatives of  𝑃 with respect to 𝑠 and 𝑡, respectively. 

Definition 5. A curve α(s) lying on 𝑆 is classified as follows:  

i) Curvature line: Its tangent vector aligns with a principal curvature direction.  

ii) Geodesic: The curve’s normal vector field 𝑁(𝑠) is parallel to the surface normal at 

all points. 

iii) Asymptotic curve: The curve 𝛼(𝑠) is called asymptotic if at every point on it, the 

binormal 𝐵(𝑠) aligns with the surface’s  𝑛(𝑠, 𝑠0) making the two vectors parallel. 

When 𝛼(𝑠) functions as a curve that is also parametric, it is termed isoasymtotic; and when  

𝛼(𝑠) serves as a geodesic curve with a parametric description, the designation is isogeodesic. 

 Parametric Represantations of Surfaces Containing a Common Isophote curve In 

3-Dimensional Galilean space 

In what follows we present a series of characterizations and illustrative examples of surfaces 

that admit this curve as an isophote drawing on a curve situated in three-dimensional Galilean 

space with its Frenet frame. 

Case 1. Let 𝑑 be a fixed unit isotropic vector. In order for a isoparametric 𝛼 curve to serve as 

an isophote curve on the surface of 𝑃(𝑠, 𝑡), we must extract the spesific conditions that the 

surface must satisfy. First observe that the curve 𝛼(𝑠) is a  curve on  𝑃(𝑠, 𝑡) for the parameter 

value 𝑡0 ∈ [0, 𝐽]. Across the interval 0 ≤ 𝑠 ≤ 1 the three functions 

                                 𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0.                                                 (1)             

Equality is attained. Consequently the computation utilizes the equality that meets the 

necessary-and-sufficient condition  

                                                   〈𝑛(𝑠, 𝑡), 𝑑〉 = 𝑐𝑜𝑠𝜃                                                                   (2) 

as well as the surface normal equation (3) which defines 𝑛(𝑠, 𝑡) as the product of the derivative 

of 𝑃(𝑠, 𝑡) with respect to 𝑠 and the partial derivative and 𝑃(𝑠, 𝑡) with respect to 𝑡.                           
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𝑛(𝑠, 𝑡) =
𝜕𝑃(𝑠,𝑡)

𝜕𝑠
×

𝜕𝑃(𝑠,𝑡)

𝜕𝑡
.                                                                                                                         (3) 

For the curve 𝛼(𝑠) to line on the surface 𝑃(𝑠, 𝑡), the partial derivatives 𝑃(𝑠, 𝑡) with respect to 

𝑠 and 𝑡 are computed using the Frenet frame (𝑇, 𝑁, 𝐵) of the curve. Differentiating 𝑃(𝑠, 𝑡) with 

respect to 𝑠 yields 

𝜕𝑃(𝑠, 𝑡)

𝜕𝑠
= [1 +

𝜕𝜆1(𝑠, 𝑡)

𝜕𝑠
] 𝑇(𝑠) + 

[𝜅. 𝜆1(𝑠, 𝑡) +
𝜕𝜆2(𝑠,𝑡)

𝜕𝑠
− 𝜏. 𝜆3(𝑠, 𝑡)] 𝑁(𝑠, 𝑡) + [𝜆2(𝑠, 𝑡). 𝜏 +

𝜕𝜆3(𝑠,𝑡)

𝜕𝑠
] 𝐵(𝑠)                                 (4) 

while differentiation with respect to 𝑡 gives  

                                        
𝜕𝑃(𝑠,𝑡)

𝜕𝑡
=

𝜕𝜆1(𝑠,𝑡)

𝜕𝑡
. 𝑇(𝑠) +

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
. 𝑁(𝑠) +

𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
. 𝐵(𝑠).                    (5)    

Substituting equation (4) and (5) into equation (3) and using the properties of the Frenet 

frame, the surface normal vector can be expressed as a linear combination of the normal and 

binormal vectors, leading to Equation (6) 

𝑛(𝑠, 𝑡) = [− (1 +
𝜕𝜆1(𝑠,𝑡)

𝜕𝑠
)

𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
+ (1 +

𝜕𝜆1(𝑠,𝑡)

𝜕𝑠
)

𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
] 𝑁(𝑠) + [(1 +

𝜕𝜆1(𝑠,𝑡)

𝜕𝑠
)

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
−

(
𝜕𝜆2(𝑠,𝑡)

𝜕𝑠
)

𝜕𝜆1(𝑠,𝑡)

𝜕𝑡
] 𝐵(𝑠).                                                                                                            (6)                                                                                                                               

  Since 𝛼(𝑠) is an isoparametric curve on the surface, we consider the restriction 𝑡 =
𝑡0.Consequently, the surface normal along the curve can be written in the form 

         𝑛(𝑠, 𝑡0) = 𝜙1(𝑠, 𝑡0). 𝑇(𝑠) + 𝜙2(𝑠, 𝑡0). 𝑁(𝑠) + 𝜙3(𝑠, 𝑡0). 𝐵(𝑠). (7) 

In this case the coefficient functions line up like this: 

                𝜙1(𝑠, 𝑡0) = 0                                                                                                             (8) 

𝜙2(𝑠, 𝑡0) = [− (1 +
𝜕𝜆1(𝑠, 𝑡0)

𝜕𝑠
)

𝜕𝜆3(𝑠, 𝑡0)

𝜕𝑡
+ (1 +

𝜕𝜆1(𝑠, 𝑡0)

𝜕𝑠
)

𝜕𝜆3(𝑠, 𝑡0)

𝜕𝑡
] 

𝜙3(𝑠, 𝑡0) = [(1 +
𝜕𝜆1(𝑠, 𝑡0)

𝜕𝑠
)

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
− (

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑠
)

𝜕𝜆1(𝑠, 𝑡0)

𝜕𝑡
]. 

Furthermore because the curve is an isoparametric curve on the surface, 𝜕𝜆1(𝑠, 𝑡0) = 

𝜕𝜆2(𝑠, 𝑡0) = 𝜕𝜆3(𝑠, 𝑡0) = 0 the partial derivatives of the functions 𝜆1, 𝜆2, 𝜆3 according to 

parameter 𝑠 are equal to zero. Consequently the preceding expression can be rearranged as 

follows: 

                                                          𝜙1(𝑠, 𝑡0) = 0                                                                     (9)                                                                   

𝜙2(𝑠, 𝑡0) =
𝜕𝜆3(𝑠, 𝑡0)

𝜕𝑡
 

𝜙3(𝑠, 𝑡0) =
𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
. 

Substituting these expressions into equation (7), the surface normal along the curve is obtained 

as 

       𝑛(𝑠, 𝑡0) = −
𝜆3(𝑠,𝑡0)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠,𝑡0)

𝜕𝑡
𝐵(𝑠).                                                                        (10) 

With the above operations, we have obtained the surface normal along the curve. 

𝑑 = (−
𝑘𝑛

𝑘
𝑐𝑜𝑠𝜃 −

𝑘𝑔

𝑘
sin𝜃)𝑁(𝑠) + (−

𝑘𝑛

𝑘
𝑠𝑖𝑛𝜃 +

𝑘𝑔

𝑘
𝑐𝑜𝑠𝜃) 𝐵(𝑠). (11) 

Therefore, using the isophote condition, we can write as following: 
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〈𝑛(𝑠,𝑡0),𝑑〉

‖𝑛(𝑠,𝑡0)‖
=

1

√𝜙2
2(𝑠,𝑡0)+𝜙3

2(𝑠,𝑡0)

〈
𝜕𝜆3(𝑠,𝑡0)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠,𝑡0)

𝜕𝑡
𝐵(𝑠), (−

𝑘𝑛

𝑘
𝑐𝑜𝑠𝜃 −

𝑘𝑔

𝑘
sin𝜃)𝑁(𝑠) +

(−
𝑘𝑛

𝑘
𝑠𝑖𝑛𝜃 +

𝑘𝑔

𝑘
𝑐𝑜𝑠𝜃) 𝐵(𝑠)  〉.                                                                                                (12) 

When all of the requisite steps are taken, the result is obtained as following; 
〈 𝑛(𝑠,𝑡0),𝑑〉

‖ 𝑛(𝑠,𝑡0)‖
=

1

√𝜙2
2(𝑠,𝑡0)+𝜙3

2(𝑠,𝑡0)

[𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃𝜙2(𝑠, 𝑡0) + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃𝜙3(𝑠, 𝑡0)]                             (13) 

Considering equations (1) and (2) we can obtain the following theorem with a simple 

calculation. 

Theorem 1. Let 𝛼(𝑠) be a curve on an admissible regular surface 𝑃(𝑠, 𝑡). The curve is both an 

isoparametric and an isophote curve if and only if the following relations are satisfied: 

                                       𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0                                               (14) 
𝜕𝜆3(𝑠, 𝑡0)

𝜕𝑡
𝑐𝑜𝑠𝜙 =

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
− 𝑠𝑖𝑛𝜙 

Proof. Assume that the curve 𝛼(𝑠) is both an isoparametric and an isophote curve on the 

admissible regular surface 𝑃(𝑠, 𝑡). Since 𝛼(𝑠) is isoparametric, it lies on a parameter curve 𝑡 =
𝑡0, which implies  

                                    𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 .                                                 (15) 

Moreover, the isophote condition requires that the surface normal makes a constant angle 𝜙 

with a fixed direction. Differentiating this condition with respect to 𝑡 and evaluating at  𝑡 = 𝑡0,  
we obtain 

𝜕𝜆3(𝑠, 𝑡0)

𝜕𝑡
= −𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
= 𝑐𝑜𝑠𝜙, 

which leads to relations given in (14) and (15). 
Conversely, suppose that the conditions 

                                        𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0  

together with 

  
𝜕𝜆3(𝑠, 𝑡0)

𝜕𝑡
= −𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
= 𝑐𝑜𝑠𝜙, 

are satisfied. The first condition ensures that 𝛼(𝑠) is an isoparametric curve on 𝑃(𝑠, 𝑡),  while 

the latter relations guarantee that the surface normal along 𝛼(𝑠)  makes a constant angle 𝜙 with 

the fixed direction. Hence, 𝛼(𝑠) is an isophote curve. Therefore, the curve  𝛼(𝑠) is both 

isoparametric and isophote if and only if the stated conditions hold. 

Theorem 2. Suppose the curve 𝛼(𝑠) is isoparametric on the surface 𝑃(𝑠, 𝑡). It is an isophote-

geodesic curve if and only if the following equations are satisfied: 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 0 

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= −1; 𝜙 =

3𝜋

2
 

Proof. The normal of surface 𝑃(𝑠, 𝑡) is equation (10). Furthermore, since the 𝛼(𝑠) curve is 

geodesic 𝑘𝑔 = 0,and if 𝑘𝑔 = 0 is used in the following equation  
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𝑑 = (
−𝑘𝑛

𝑘
𝑐𝑜𝑠𝜃 −

𝑘𝑔

𝑘
𝑠𝑖𝑛𝜃) 𝑁(𝑠) + (

−𝑘𝑛

𝑘
𝑠𝑖𝑛𝜃 +

𝑘𝑔

𝑘
𝑐𝑜𝑠𝜃) 𝐵(𝑠) 

𝑑 =
−𝑘𝑛

𝑘
𝑐𝑜𝑠𝜃. 𝑁(𝑠) −

𝑘𝑛

𝑘
𝑠𝑖𝑛𝜃𝐵(𝑠) 

is obtained. Since 𝛼(𝑠) curve is geodesic, it can be taken  
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= −1 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 0 

 

as per definition (5). Furthermore, 𝜙 =
3𝜋

2
 is obtained from  the condition of being an isophote 

curve. As a result, this completes the proof. 

Theorem 3. Let 𝛼(𝑠) be an isoparametric curve on the surface 𝑃(𝑠, 𝑡). It is isophote-asymtotic 

if and only if the binormal aligns with the surface, satisfying the following equations: 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 0 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 1; 𝜙 = [0,2𝜋]. 

Proof. The normal of surface 𝑃(𝑠, 𝑡), which is equation (10), is as follows; 

𝑛(𝑠, 𝑡0) = −
𝜆3(𝑠, 𝑡0)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
𝐵(𝑠) . 

Here, since the 𝛼(𝑠) curve is asymtotic, 𝑘𝑛 = 0 

−
𝑘𝑔

𝑘
𝑠𝑖𝑛𝜃𝑁(𝑠) +

𝑘𝑔

𝑘
𝑐𝑜𝑠𝜃𝐵(𝑠) 

is obtained if 𝑘𝑛 = 0 in the equation  

𝑑 = (−
𝑘𝑛

𝑘
𝑐𝑜𝑠𝜃 −

𝑘𝑔

𝑘
𝑠𝑖𝑛𝜃) 𝑁(𝑠) + (−

𝑘𝑛

𝑘
𝑠𝑖𝑛𝜃 +

𝑘𝑔

𝑘
𝑐𝑜𝑠𝜃) 𝐵(𝑠). 

Since 𝛼(𝑠) curve is an asymtotic curve, 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 0 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 1 

can be taken as per definition (5). Furthermore, 𝜙 = 0, 𝜙 = 2𝜋 is obtained when the required 

operations are performed according to description isophote curve from the condition of  being 

isophote curve. As a result, this completes the proof.  

Theorem 4. Assume that the 𝛼(𝑠) curve on the surface P(s,t) is an isoparametric curve. If and 

only if the curve 𝛼(𝑠) to be a silhouette curve on the surface P(s,t), equations of 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜃 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙; 𝜙 =

𝜋

2
 

should be provided. 

Proof. The normal of surface P(s,t), with the help of equation (10), is  as follows: 

𝑛(𝑠, 𝑡0) = −
𝜆3(𝑠, 𝑡0)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
𝐵(𝑠) . 

When 𝑑 = 𝑄 is taken here; in case of silhouette curve, 〈𝑛, 𝑑〉 = 0 can be written. If 〈𝑛, 𝑑〉 = 0, 

in the condition of being a silhouette, 
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𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

is obtained. In the case of 𝑑 = −𝑄  
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= −𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= −𝑐𝑜𝑠𝜙 

is obtained in the same way. As a result, proof is given. 

Theorem 5.  Assume that the 𝛼(𝑠) curve on the surface 𝑃(𝑠, 𝑡) is an isoparametric curve.If and 

only if the 𝛼(𝑠) curve to be a silhouette curve on the surface 𝑃(𝑠, 𝑡); 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙;  𝜙 =

𝜋

2
,
3𝜋

2
 

should be provided. 

Proof. The normal of surface P(s,t), with help of equation (3.10), is  as follows: 

𝑛(𝑠, 𝑡) = −
𝜆3(𝑠, 𝑡0)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
𝐵(𝑠) . 

Also, 𝑑 = 𝑇 + 𝑄 and 𝑄 = 𝑐𝑜𝑠𝜙𝑁(𝑠) + 𝑠𝑖𝑛𝜙𝐵(𝑠) can be written. According to the definition 

silhouette curve, 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

can be written as 〈𝑛, 𝑑〉 = 0 from equation silhouette curve definition. Also, since the 𝛼(𝑠) 

curve is a geodesic curve, 
𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 0 

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
≠ 0 

according to  definition (5). Since 
𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 = 0; 𝜙 =

𝜋

2
,

3𝜋

2
 can be taken from here. 

Example 1. Let 𝛼(𝑠) be a parametrized by 𝛼(𝑠) = (𝑠, 2𝑠2, −2𝑠2). It is a calculate that  

𝑇(𝑠) = (1,4𝑠, −4𝑠) 

𝑁(𝑠) = (0,
1

√2
, −

1

√2
) 

𝐵(𝑠) = (0,
1

√2
,

1

√2
) 

,where 𝜅 = 4√2 is the curvature and 𝜏 = 0 is the torsiyon of the curve in 𝐺3. Then we obtained 

the surfaces family with the common isoasymtotic. If we take 
𝜕𝜆1(𝑠, 𝑡)

𝜕𝑡
= 0 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝑡 + 1 

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠2𝑡 

and 𝑡 = 𝑡0 such that theorem (3.3) is satisfied. So a member of this family is obtained by  
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𝑃(𝑠, 𝑡) = (𝑠, 2𝑠2 + 1 +
𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠2𝑡

√2
, −2𝑠2 +

(−1 − 𝑠𝑖𝑛𝑡 + 𝑐𝑜𝑠2𝑡)

√2
). 

 

Case 2. Considering d is a unit fixed non- isotropic vector: 

Theorem 6. The necesssary and sufficient condition for the 𝛼(𝑠) curve to be an isoparametric 

and non-isotope curve on the surface of 𝑃(𝑠, 𝑡) is to provide the equations: 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
. 𝑠𝑖𝑛𝜙 =

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙. 

Proof. In the situation of being non-isophote curve, 𝑑 = 𝑇 + 𝜙. 𝑛 and 𝑛 = −𝑠𝑖𝑛𝜙. 𝑁 +
𝑐𝑜𝑠𝜙. 𝐵. 
Due to the definition of a non-isophote curve, the surface's normal is 

𝑛(𝑠, 𝑡) =
−𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
𝐵(𝑠). 

We can express 𝜆1, 𝜆2, 𝜆3 as 〈𝑛, 𝑑〉 = 𝜙 as follows: 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙. 

When we proportion 
𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 and 

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 equations, we also get the relationship 

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
. 𝑠𝑖𝑛𝜙 =

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
. 𝑐𝑜𝑠𝜙. 

Conclusion 1. In order for the 𝛼(𝑠) isoparametric curve to be a non-isotope curve on the surface 

of 𝑃(𝑠, 𝑡), the necessary and sufficient condition is to provide the equations: 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

𝜕𝜆2(𝑠, 𝑡0)

𝜕𝑡
. 𝑠𝑖𝑛𝜙 =

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
. 𝑐𝑜𝑠𝜙. 

Let's look at the functions 𝜆1, 𝜆2, 𝜆3 and see how they can be broken into two parts for better 

analysis and practical applications: 

𝜆1(𝑠, 𝑡) = 𝑙(𝑠). Λ1(𝑡) 

𝜆2(𝑠, 𝑡) = 𝑚(𝑠). Λ2(𝑡) 

𝜆3(𝑠, 𝑡) = 𝑛(𝑠). Λ3(𝑡). 
The functions 𝑙(𝑠), 𝑚(𝑠), 𝑛(𝑠), Λ1, Λ2, Λ3 are all C¹ functionsin here.We get the following 

outcome under these circumstances. 

Conclusion 2. For an 𝛼(𝑠)  curve to be isoparametric non-isophote curves on the surface of 

𝑃(𝑠, 𝑡), the necessarry and sufficient condition is : 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑠𝑖𝑛𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

https://doi.org/10.30605/proximal.v9i1.7851


Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika 

ISSN 26158132 (cetak) 

ISSN 26157667 (online) 

     Halaman 112 dari 114 

https://doi.org/10.30605/proximal.v9i1.7851          Volume 9 Nomor 1, Tahun 2026 

Λ3
′ . 𝑛(𝑠) = 𝑠𝑖𝑛𝜙 

                                                              Λ2
′ . 𝑚(𝑠) =cos𝜙. 

Theorem 7. For an 𝛼(𝑠) curve to be non-isotope geodesic on the surface of 𝑃(𝑠, 𝑡) , the 

necessary and sufficient condition is 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
=

1

𝑠𝑖𝑛𝜙
;  𝜙 =

𝜋

6
,
𝜋

4
,
𝜋

3
. 

Proof. In the situation of being non-isotope, 𝑇 = 𝑑 + 𝜙. 𝑛 and 𝑛 = −𝑠𝑖𝑛𝜙. 𝑁 + 𝑐𝑜𝑠𝜙. 𝐵. The 

surface’s normal is  

𝑛(𝑠, 𝑡) =
−𝜆3(𝑠, 𝑡)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
𝐵(𝑠). 

We can write 𝜆1, 𝜆2, 𝜆3 such that 〈𝑛, 𝑑〉 = 𝜙 using the notion of a non-isophote curve as follows; 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
=

1

𝑠𝑖𝑛𝜙
. 

Also, since the curve is geodesic, 
𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
≠ 0,

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
= 0 can be represented using the geodesic 

curve definition. Since 
𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
≠ 0,

𝜋

6
,

𝜋

4
,

𝜋

3
 can be written. As a result, the proof is completed.  

Theorem 8. The necessary and sufficient condition for the 𝛼(𝑠) curve to be a non-isotope 

asymtotic on the surface of 𝑃(𝑠, 𝑡) is to provide the equations 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
=

1

𝑐𝑜𝑠𝜙
; 𝜙 = 0,

𝜋

6
, 2𝜋,

𝜋

3
. 

Theorem 9. The necessary and sufficient condition for the 𝛼(𝑠) curve to be a non-isotope 

sihouette curve on the surface of  𝑃(𝑠, 𝑡) is to provide the equations 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= −𝑠𝑖𝑛𝜙. 

Proof. In the situation of being non-isotope, 𝑑 = 𝑇 + 𝜙. 𝑛 and 𝑛 = −𝑠𝑖𝑛𝜙. 𝑁 + 𝑐𝑜𝑠𝜙. 𝐵.The 

surface’s normal is 𝑛(𝑠, 𝑡) =
−𝜆3(𝑠,𝑡)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
𝐵(𝑠) such that 〈𝑛, 𝑑〉 = 0 are  as follows 

due to the silhouette curve definition : 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 𝑐𝑜𝑠𝜙 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= −𝑠𝑖𝑛𝜙. 

Theorem 10. The necessary and sufficient condition for the 𝛼(𝑠) curve to be a non-isotope 

silhouette geodesic curve on the surface of  𝑃(𝑠, 𝑡) is 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 1 

𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= 0; 𝜙 = 0,2𝜋. 

Proof.  In the situation of being non-isotope, 𝑑 = 𝑇 + 𝜙. 𝑁 and 𝑛 = −𝑠𝑖𝑛𝜙. 𝑁 + 𝑐𝑜𝑠𝜙. 𝐵. The 

surface’s normal is 𝑛(𝑠, 𝑡) =
−𝜆3(𝑠,𝑡)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
𝐵(𝑠).  𝜆1, 𝜆2, 𝜆3 such that 〈𝑛, 𝑑〉 =

0 follows can be written as follows due to being silhouette definition; in other words 〈𝑛, 𝑑〉 = 0 

and 
𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
. 𝜙. 𝑠𝑖𝑛𝜙 = 0. Howeever, because the curve is a geodesic curve 

𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
≠ 0,  
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𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
= 0 can be written using the geodesic curve definition. As a result, the proof is 

completed. 

Theorem 11. The necessary and sufficient condition for the 𝛼(𝑠) curve to be a non-isotope 

silhouette asymptotic curve on the surface of P(s,t)  is 

𝜆1(𝑠, 𝑡0) = 𝜆2(𝑠, 𝑡0) = 𝜆3(𝑠, 𝑡0) = 0 
𝜕𝜆2(𝑠, 𝑡)

𝜕𝑡
= −1 

𝜕𝜆3(𝑠, 𝑡)

𝜕𝑡
= 0; 𝜙 =

𝜋

2
,
−𝜋

2
,
3𝜋

2
,
−3𝜋

2
. 

Proof. In the situation of being non-isotope, 𝑑 = 𝑇 + 𝜙. 𝑁 and 𝑛 = −𝑠𝑖𝑛𝜙. 𝑁 + 𝑐𝑜𝑠𝜙. 𝐵The 

surface"s normal is 𝑛(𝑠, 𝑡) =
−𝜆3(𝑠,𝑡)

𝜕𝑡
𝑁(𝑠) +

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
𝐵(𝑠). 𝜆1, 𝜆2, 𝜆3 such that 〈𝑛, 𝑑〉 =

0 follows can be written as follows due to being silhouette definition; in other words 〈𝑛, 𝑑〉 = 0 

and 
𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
. 𝜙. 𝑐𝑜𝑠𝜙 = 0. Howeever, because the curve is a a asymtotic curve 

𝜕𝜆3(𝑠,𝑡)

𝜕𝑡
= 0,  

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
≠ 0 can be written using the asymtotic curve definition. As a result, we can use 

𝜕𝜆2(𝑠,𝑡)

𝜕𝑡
=

−1. Since 𝑐𝑜𝑠𝜙 = 0, 𝜙 =
𝜋

2
, 

−𝜋

2
,

3𝜋

2
,

−3𝜋

2
  can also be used. 

 Conclusion 

          In the setting of three-dimensional Galilean space, the three families of curves, isophote, 

non-isophote, and silhouette that lie on defined surfaces are examined. By deploying the Frenet 

frame adapted to Galilean geometry, necessary and sufficient criteria are derived that determine 

when a given curve qualifies as an isophote, a non-isophote, or a silhouette curve. These results 

highlight the distinctive geometric behavior of isophote, non-isophote, and silhouette curves in 

the three-dimensional Galilean space, which differs essentially from the classical Euclidean and 

Minkowski settings. The criteria obtained here provide a clearer characterization of such curves 

within Galilean geometry. Future work may focus on extending these results to higher-

dimensional Galilean spaces or to other types of curves and surfaces. 

REFERENCES 

Doğan, F., Yayli, Y. (2015). On isophote curves and their characterizations. Turkish Journal, 

of Mathematics, 39(5), 650-664. 

Koenderink, J. J., van Doorn, A. J. (1980). Photometric invariants related to solid shape. Optic              

Acta: International Journal of Optics, 27(7), 981-996. 

 Poeschl, T. (1984). Detecting surface irregularities using isophotes. Computer Aided 

Geometric Design, 1(2), 163-168. 

Sara, R. Local Shading Analysis via Isophotes Properties. PhD, Johannes Kepler University, 

Austria, 1994. 

 Kim, K. J., Lee, I. K. (2003). Computing isophotos of surface of revolution and canal 

surface. Computer-aided design, 35(3), 215-223. 

https://doi.org/10.30605/proximal.v9i1.7851


Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika 

ISSN 26158132 (cetak) 

ISSN 26157667 (online) 

     Halaman 114 dari 114 

https://doi.org/10.30605/proximal.v9i1.7851          Volume 9 Nomor 1, Tahun 2026 

Izumiya, S., & Takeuchi, N. (2004). New special curves and developable surfaces. Turkish 

Journal of Mathematics, 28(2), 153-164. 

Dogan, F. (2012). Isophote curves on timelike surfaces in Minkowski 3-space. arXiv preprint 

arXiv:1203.4389. 

Ergün, E., Bayram, E., & Kasap, E. (2014). Surface pencil with a common line of curvature in 

Minkowski 3-space. Acta Mathematica Sinica, English Series, 30(12), 2103-2118. 

Ergün, E., Bayram, E., & Kasap, E. (2015). Surface family with a common natural line of 

curvature lift. Journal of Science and Arts, 15(4), 321. 

Yaglom, I. M. (2012). A simple non-Euclidean geometry and its physical basis: An elementary 

account of Galilean geometry and the Galilean principle of relativity. Springer Science 

& Business Media. 

Musielak, Z. E., Fry, J. L. (2009). Physical theories in Galilean space-time and the origin of 

Schrödinger-like equations. Annals of Physics, 324(2), 296-308. 

 Aydın, M. E., Külahçı, M. A., & Öğrenmiş, A. O. (2019). Constant curvature surfaces in 

Galilean 3-space. International Electronic Journal of Geometry, 12(1), 9-19. 

Dede, M. (2013). Tubular surfaces in Galilean space. Mathematical Communications, 18(1), 

209-217. 

 Divjak, B., & Milin-Šipuš, Z. (2002). Special curves on ruled surfaces in Galilean and pseudo- 

Galilean spaces. Acta Mathematica Hungarica, 98(3), 203-215. 

Yoon, D. W., Lee, J. W., & Lee, C. W. (2015). Osculating curves in the Galilean 4- 

space. International Journal of Pure and Applied Mathematics, 100(4), 497-506. 

Yoon, D. W., Yüzbaşi, Z. K., & Bektaş, M. (2017). An approach for surfaces using an 

asymptotic curve in Lie Group. Journal of Advanced Physics, 6(4), 586-590. 

Yüzbası, Z. K. (2016). On a family of surfaces with common asymptotic curve in the Galilean 

space 𝐺3. J. Nonlinear Sci. Appl, 9, 518-523. 

 Ali, A. T., & Turgut, M. (2019). Some characterizations of isophote curves on surfaces. 

Mathematics and Computers in Simulation, 155, 196–206. 

 Celik, Y., & Onder, M. (2020). Special curves and surfaces in Galilean and pseudo-Galilean 

spaces. Applied Mathematics and Computation, 372, 124991. 

Ersoy, S., & Tosun, M. (2021). Isophote curves according to the Darboux frame. Journal of 

Geometry, 112(2), 1–15. 

  Körpınar, T., & Demir, E. (2018). On isophote curves and surfaces in non-Euclidean spaces. 

Advances in Applied Clifford Algebras, 28(3), 1–14. 

https://doi.org/10.30605/proximal.v9i1.7851

