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Abstract. In this work, the main objective is to find a solution to the general heat equation using the offset
fractional Fourier transform (OFrFT), which is represents a generalized form of the solution of the heat equation
using the classical Fourier transform. This method provides a broader analytical framework for solving partial
differential equations such as the heat equation. Several illustrative examples are presented to demonstrate the
effectiveness and power of the OFrFT in comparison with the classical Fourier transform.
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A. Intoduction

The study of integral transforms has long been a cornerstone in the development of analyt
ical and computational methods in mathematics, physics, and engineering. Among these, the
classical Fourier transform has played a central role due to its powerful ability to decompose
signals into frequency components, providing profound insights into the behavior of linear sys
tems, solving differential equations, and enabling signal analysis. However, as the complexity
of scientific problems has increased, so too has the need for more generalized tools. One such
generalization is the fractional Fourier transform (FrFT), a powerful mathematical tool that
interpolates between the time and frequency domains, offering a richer framework for analyzing
and processing signals.

The offset fractional Fourier transform (OFrFT) is a further extension of the FrFT, incor
porating additional degrees of freedom that allow for more nuanced transformations. These
additional parameters in the OFrFT offer enhanced flexibility, enabling improved modeling ca
pabilities in systems where conventional transformations may fall short. The OFrFT can be
viewed as a shifted and rotated version of the FrFT, capable of accommodating offset
phenomena that naturally arise in various physical contexts.

In recent years, the FrFT and its variants have seen rapid development and widespread
adoption across several disciplines, including optics, quantum mechanics, signal processing,
and applied mathematics. The fractional nature of the FrFT allows it to model intermediate
domains between time and frequency, making it especially valuable in systems where chirp-
like signals or nonstationary processes dominate. For instance, in optical signal processing, the
FrFT has been employed to model the propagation of light through quadratic graded-index
media and lens systems (Bernardo & Soares, 1994; Mendlovich & Ozaktas, 1993; Ozaktas &
Aytiir, 1995; Ozaktas & Kutay, 2001; Liu et al., 1997). These works have demonstrated the
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superiority of the FrFT in describing diffraction patterns, lens focusing behavior, and imaging
systems under conditions where the classical Fourier framework proves inadequate.

In the domain of quantum mechanics, the FrFT provides an elegant framework for de
scribing wavefunctions and quantum states in phase space. The FrFT is closely related to the
Wigner distribution and the linear canonical transform (LCT), making it a natural candidate for
analyzing quantum harmonic oscillators, uncertainty principles, and eigenvalue problems.
Pioneering works such as Namias (1980) and Qiu et al. (2019) have discussed the role of FrFT
in quantum evolution and its connection to the Schrodinger equation, revealing the versatility
of the fractional domain in modeling quantum dynamics.

Despite these advances, there remains a gap in the literature concerning the use of the
offset fractional Fourier transform (OFrFT) in solving partial differential equations (PDEs),
partic ularly those that govern heat conduction, wave propagation, and diffusion processes.
While several studies have applied the classical fractional Fourier transform (FrFT) and linear
canoni cal transform (LCT) to address such equations (Bahri & Ashino, 2020; Namias, 1980;
Prasad et al., 2014), the explicit role of the OFrFT in this context remains underexplored. The
OFrFT, by incorporating spatial or temporal shifts along with rotation in the time-frequency
plane, introduces an additional level of adaptability that can be leveraged to solve generalized
forms of classical PDEs. The transformation allows for more flexible boundary modeling and
can better accommodate inhomogeneities or nonstationarities in the medium. This paper seeks
to fill that gap by exploring the utility of the OFrFT in solving a class of generalized heat
equations, thereby extending the analytical toolkit for PDE-based modeling in complex
systems.

The heat equation is one of the most fundamental PDEs in mathematical physics,
modeling the diffusion of heat in a given medium. Its classical solution via the Fourier transform
is well-known; however, when the system exhibits nonstandard boundary conditions, variable
diffusivity, or nonhomogeneous media, the standard Fourier framework may become
insufficient. In such scenarios, the OFrFT offers a promising alternative. Prior efforts in this
direction include Prasad et al. (2014), where the fractional Fourier transform was employed to
solve the wave equation, generalizing classical results and demonstrating the advantages of
fractional-domain analysis. Similarly, the work of Bahri and Ashino (2020) extended these
ideas to both the heat and wave equations through the linear canonical transform, highlighting
the theoretical richness and practical benefits of generalized transforms.

Motivated by these developments, the primary goal of this study is to provide a rigorous
analytical framework for solving the generalized heat equation using the offset fractional
Fourier transform. Our contributions are threefold. First, we establish the mathematical
foundation of the OFrFT, including its definition, key properties, and operational rules.
Particular emphasis is placed on the convolution theorem, which serves as a vital tool for
transforming and solving differential equations. We demonstrate that the convolution theorem
in the OFrFT domain can be viewed as a generalization of its classical Fourier counterpart,
enabling a broader class of functions and boundary conditions to be handled.

Second, we formulate and solve the generalized heat equation within the OFrFT
framework. We begin by applying the transform to the differential operator and deriving the
transformed equation in the offset fractional domain. Utilizing the properties of the OFrFT, we
obtain an analytical solution that accounts for the offset parameters, thus providing more
accurate modeling in systems where standard assumptions are violated. Our approach offers a
pathway for addressing initial and boundary value problems in heterogeneous media, where
classical methods may falter.

Third, to illustrate the practical implications and validate the effectiveness of the proposed
method, we present a detailed example. The example involves a generalized heat conduction
problem with spatially varying coefficients and nonhomogeneous boundary conditions. We
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solve this problem analytically using the OFrFT framework and compare our results with those
obtained through conventional methods. The comparison reveals that the OFrFT-based solution
not only aligns with classical results under limiting conditions but also captures additional
nuances introduced by the offset parameters.

The implications of this research are far-reaching. Beyond heat conduction, the
techniques developed herein can be extended to other types of PDEs, such as the Schr'odinger
equation, the diffusion equation, and even systems of coupled equations arising in fluid
dynamics, elec tromagnetics, and financial mathematics. Moreover, the OFrFT may serve as a
foundation for developing numerical schemes that incorporate transform-domain filtering,
regularization, and spectral analysis.

This study also contributes to the theoretical advancement of transform analysis by
deepen ing our understanding of the relationship between the classical Fourier transform, the
FrFT, and the OFrFT. Through the derivation of operational properties and their application to
PDEs, we offer new insights into how generalized transforms can be systematically employed
to address complex problems in applied science and engineering.

In summary, this paper is organized as follows. Section B introduces the necessary
mathematical preliminaries and notations used throughout the paper. The definition of the offset
fractional Fourier transform and its useful properties is provided in Section C. In Section D, we
formulate and solve the generalized heat equation under the OFrFT domain. We apply the
transform to the differential operator and utilize the properties of OFrFT to obtain an analytical
solution that includes the offset parameters. Finally, Section E concludes the paper by
summarizing our main findings and suggesting potential avenues for future research.

B. Notations

First, we outline several notations and lemmas that will serve as a foundation for the rest
of this article.
Definition 1. Where 1 < p < oo, LP(R) denotes the Banach space of measurable functions on

R furnished with the norm
1

’ (1)
Ifllrwy = (f lf Col? dx> < oo,
R
More specifically, LP (R) becomes a Hilbert space with the standard inner product.
(f,9) = f f()g(x) dx. 2
R

We now revisit the definition of the Fourier transform (FT) and its associated lemmas.
Definition 2. The Fourier transform for a function f belonging to L*(R) is expressed by

” 1
ﬂm=TUMﬂ=E§Ae

and for all f, f € LX(R), the inversion formula is calculated as

~MX £ (x) dx, neER, 3)

A 1 A
@ =7 {f D)) == [ e™fadn,  xeR (4)
f (fm}0) = =] e™f @ dn
Lemma 1. The Fourier transform corresponding to a Gaussian function is
1 n?
Fle=@* () = —e 44, 5
e jm == (5)
with a > 0.

Lemma 2. The Fourier transform corresponding to the Poisson kernel is
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Definition 3. Suppose f € L}(R). Translation, modulation and dilation operators of the
function f are formulated as follows

. X
Taf(x) = f(x - a)’ be(.X') = elbxf(x)' Cf(x) = mf (E)’ (7)
c
where a, b, ¢ are real constants.
Definition 4. Let f € L1(R), then the convolution of the functions f and g, symbolized by f *

g is defined as

(f * ) = f_ F©g(x — o)t @®
and
F{f * g3(m) = F{ I F{g}®). &)

C. Offset Fractional Fourier Transform and Properties

Definition 5. For f € L*(R), the offset fractional Fourier transform (OFrFT) of the
function f is given by

FEPY) = [ FOKiamm e (10)
R
with the kernel function g mn)(t,n) takes the form
7(( )(t n) = A e%mz COtae%((Uz +t?) cota+2t(m-n) csca+2n(n-m cota)) (11)
amn a .

At this point, parameters (a, m,n) are real numbers and a # nm,n € Z.

Theorem 1. For all f € L*(R) and T@ga‘m’n) {f} € LY(R), the inverse of the offset fractional
Fourier transform is defined by

O = f FEMN Y (K G (12)
R

Theorem 2. Consider that f(t) to be continuously differentiable. If we take as an
assumption that

Jim f@) =0, (13)
then
(amm) (4"f (amn)
Fo {dt”} () = (l(T] m —ncotB)sinp + cosf ) Fo {f1m). (14)
Theorem 3. Suppose K (g m n) be the kernel of the OFrFT. We express D™ as follows
— 0
D" = (E—i(tcot,8+mcsc[)’)”), (15)

Thus, for alln € N, it holds that
i.  D"K(gmmn) = (—=incscB)"K(gmn)
ii.  Jp D"Kgmmdt = [ KpmmnD™ f(t)dt,
i, FgM{DMF(O3) = (in esc pPFS (),

with D" = % — i(t cot B + mcscp).
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D. Offset Fractional Fourier Transform for Generalized Heat Equation
In the following sections, we apply the offset fractional Fourier transform (OFrFT) to

address generalized heat equations. We begin by expressing the one-dimensional heat equation

in the OFrFT domain.
du(x,t _
% = c2(Dy)*ulx,t), x€Rte(0,). (16)

In this setting, the initial condition u(x,0) = f(x) belongs to L' (R), and D; is specified by

equation (15) where ¢ represents an arbitrary constant.

Applying the FrFT with respect to x on both sides of equation (16) yields

ou(x,t) —,
j :K(B,m,n) (x, 77) ot dx = c? f jc(ﬁ,m,n) (x, 77) (Dx)zu(x: t)dx. (17)
R R
One can rewrite this equation as
(Bmn)
ou x,t
-0 ” (x,0) = —c?n? csc? ,Bu(()ﬁ’m'n)(x, t). (18)
It follows that
u(()ﬁ,m,n) (77' t) = Ce—CZTIZ csc? B t (19)

with C denotes an arbitrary constant.
Considering the initial condition u(x, 0) = f(x), it can be shown that

ugﬁ M (x,0) = f Kpgmnmy Co,m)f () dx = C. (20)
Replacing (20) in (19) gives :
uéﬂ’m‘n) (x,t) = (f Kpgmn) (x,n)f(x)dx) e~c'niesct it (21)
Taking the inverse of the FrFT inR(21), we see that
uCe,t) = (FE™) "l 0} (n, 0. 22)
As a consequence of equation (12), we additionally obtain

ulx, t)
= (T@Eﬁ'm’”))_l {uf)ﬁ ) (y, t)} (1, t)

_ A—f e—%((n2+x2+m2) cot B+2x(m-n) csc B+2n(n-m cotﬁ))
P R
i((n2+x2+m2) cot f+2x(m-n) csc B+2n(n—m cot ﬁ)) —c2n2csc?ft
X (Aﬂ) e2 f(x)dx e dn
R
_ |A3 |2 ] e_%(xz cot B+2x(m-n) cscﬁ) <J e%(xz cot f+2x(m-n) cscﬁ) f(x)dx> e—cznz csczﬁ tdn
R R

2 Ly —i
— |A[3| ] e 5X cotf—ixmcscf
R

ixmcscf MHXTRCM,@ —ixncscf —c?n?csc?pt
x| e e 2 e f(x)dx |e dn. (23)
R R
Set
P2

g(ﬁ'm) (x) = e%ﬂxmcotﬁf(x)’ (24)

and
ncscf = v. (25)

Equation (23) above implies that
u(lx, t)
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_ |A‘3|2€_%xz cotf—ixmcscf sinﬁf eixv <f g(ﬁ*m)(x) e_idex> e_czvz tdv

|Aﬁ| ——x 2cotf— lmeSCﬁSlnﬂ\/_j va —c?v t( 1

Bm)(x e‘ix”dx) dv
= jR gBm )

— /_27_[ sinﬁ |AB| e_fx cotﬁ—ixmcscﬁf etxv 2p2 tT{g ﬁm)}(x)dv_ (26)
R
In view of equation (5), we have
1 _i} 2,2
F e 4ty (v) =e VL, (27
{\/ 2c%t )
Inserting equation (27) into equation (26) yields
u(x, t)

R

2
_ V27 sin B |Aﬁ| e—%xz cot f—ixmcscf f
V2c?t R
Applying equation (9) to equation (28) leads to
ulx, t)

\/% e_ﬁ} (v) F{g¥™}(x)dv

F {e_%} (v) T{g(ﬁ'm)}(v)eix”dv. (23)

2

2

V2msinf |A j . -1 x

_Yer lzﬁz 141 ¢~ cotpoimmesc (p(fmm) {gr {e‘m} (U)T{g(ﬁ’m)}(v)}(x,t)
Vicet

. 2
_ V21 Slnﬁ |Aﬁ| e—%xZCOtB—ixmcscﬁ e 4—621,' *g(ﬁm)(x) (y)
V2c?t
. 2
_ 21 Slnﬁ |Aﬁ| e—%xzcotﬁ—ixmcscﬁ e 4-c2t*elx ;0 ﬁ+1xmcscﬁf(x) (y)
2c?t
. 2 ,
_ V27 sin 8 |Aﬁ| e—%xz cot,[?—ixmcscﬁf e (’262’2 elyz gOtBHymcsch(y) dy. (29)
V2c?t R
Specifically, if f = g, relation (29) simplifies to
) =—— [ S fO)d (30)
ulx,t) = e 4c’t ,
Vamc?t Jr Yoy

representing the solution to the heat equation through the classical Fourier transform.
When m = 0, relation (29) above reduce to

. 2 t
elx co ﬁ (X %/)2 ly COt,B (31)
u(x, t) = —,ZT[CthR 4c°t e f(y) dyr

which is the solution of the heat equation using the classical Fourier transform.
An example is presented below to support and illustrate the preceding result.
Example 1. Determine the solution u(x,t) of equation (29) with ¢ = 1 and

(1, x| < 2
fG) = {O, otherwise. (32)
Solution. Using (32) together with (29), we arrive at

u(x, t)

2
. . 2
_ V2msin B |Aﬁ| e—%xzcotﬂ—ixmcscﬁf e (x413:/)zely EOtﬁ lymcscf dy
V2t

-2
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5= . 2 2 2_y2_2xy)?
_ 2m sin f8 |Aﬁ| e—%xzcotﬂ—ixmcscﬁf e—%e%ﬁwtﬁﬂymcscﬁ dy
V2t -2
= .. 2 2 2
_ ZT[SlnBlAﬁl e—%xzcotﬁ—ixmcscﬁ—%j e (41t Zcotﬁ)y +( +mescﬁ) dy. (33)
V2t

Equation (33) may be reformulated as
u(x, t)

-2

2x
4t+1m cscB)

. 2 . 1 2 (
_ \/ﬁsmﬁ |Aﬁ| e—%xz cotB—ixmcscB—ﬁ—i 2 e (4t 2COtﬁ)< (jt ZCOtB) 3’>d
Vi L ’

. 2 . 2 2 1 _(2x+i4tmcescB)
_ V2msin B |Aﬁ’| e—%xz cotﬂ—ixmcscﬁ—%f e (Tt_ECOtB)( S T-3tcotp y) dy. (34)
V2t

The preceding equation yields

VZmsin B | 4|

-2

i o . x?
u(x' t) — e—zx cotﬁ—lxmcsc[)’—4—t
V2t
. 2 . 2
1 1/2x+i4tmcscf 1(2x+idtmcscf
xfz . (E——Cotﬁ)« —§< 1—i2tcotp )) ‘Z( 1-i2tcotpB )>dy
-2
. 2 ,
_ anIHﬁlAﬁl e—%xzcotﬁ—ixmcscﬁ—i—i
vt 2
2 1 i 1(2x+i4tmcscf 1 (2x+iat )2
XJ e (4t COtﬁ)<3’ 2( 1-i2tcotB )> em—xliiz?lcgicﬁﬁ dy
-2
) 2, 2 . 2
_ V2rsin B |Ag| e—%xz cot f-ixm csc f—rtrer (fo_“l-‘ztﬁf,i‘}f)
V2t
2 _(1(2x+ifl—tmcsc[>’)\/1 icotﬁ_\/l_lcmﬁyy
XJ e 2\ 1-i2tcotp 4t 2 4t 2 dy. (35)
-2
Let
2x + i4tmcsc 1 1
(ZEEmE) oy, (36)
1—i2tcotp 4t 2
then,
+/ i 2 i . 2 1 (2x+i4tmcscf)?
u(x,t) = 2msin 8 |Ag| e_%xzcow_‘xmcscﬁ ras 1-i2t cotB

1)1 i 2x+i4tmcscf 1 i

N4t 2C°tﬁ( T-i2tcotB ) 2|7t Cow 2 dv
1

2

2x+l4tmcscB
( 1—i2tcotﬁ +2[ zcotﬁ 1 Cotﬁ

4t

. . ,
V2msinB |A _i2 . x2 1 (2x+i4tmcscp)
,3 | ﬁ| e X cotf—ixmcscf 2tTT6t . 1-12tcotp

1 i
V2t 4— 2cotﬁ

¢ 2x+L4tmcscﬁ ) 1 " f 1)1 i " <2x+i4tmcscﬁ>+2 1 i "
Mz e 2¢ 1—12tcotﬁ 4t COB —erfl g Ja 2P T iz ot a2
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As a result,
u(x, t)

; 2 : 2
i . x 1 (2x+i4tmcscp)
22 —3x” cot p—ixmesc B~Z5tyeg 1—i2tcotﬁﬁ

J1—i2tcotp (37)

< fl i i ot 2x + i4tmcsc Zi Lot fl i i " 2x + i4tmcsc +Zi i ¢
er 2¢ B(l—iZtcotﬁ) 4t Coﬁ M2 |2 2C0B< 1—i2tcotﬁ) 4t zcoﬁ'

At this point,

n

2
erf(n) == f e % dz, (38)
0
holds for all values of . The simulation of equation (37) with ¢ = 1 and under varying 8 and

m are summarized in Table 1.

Table 1 The solutions obtained for Example 1 for ¢ = 1 and different values of § and m.

B ¢ m u(x,t)
T 1 o0 1 ( ¢ xX—2 of X+ 2
2 er (2 ) er (2 ))
t
T 1 2 NG \/_ 3 2\/_i4t i4 16V3t
— 2 e (2\/5 a 4t(\/§—i2t)>x +(\/§—i2t \/§)x 3(3-i20)
3 V3 —i2t
V3
o[ erf 1 V3 - 12r<2f+i16t>_2 V3 —i2t et 1 \F—i2t<2\/§+i16t>+2 V3 —i2t
e 43 \ V3-i2t 4t\3 ) 43 \ V3-i2t 4t\3
T 1 2 i1 1 2t . 4t
1 22 e_(;'4t 4t(1—i2t))x2+(1l—i2t 21)" 1—i2t
V1 -2t

y ¢ (2x+18t> i f1 1 i<2x+i8t>+2 1 i
M2l 2T 2N\ 202 2\ Tzt 4 2

As shown in Table 1, for § = g and m = 0, equation (37) simplifies to

u(x, t) = L (erf (xz:/_Z) —erf (xz-\l-/;)), (39)

which closely resembles to the solution of the classical heat equation using the Fourier
transform as illustrated in Figure 1. Figures 2 and 3 present the solution of Example 1 with m =
2 and several time values at each specified value of S.

=3 =5 1=10]

Figure 1 Real part of solution of Example 1 form =0, g = and t=1,3510.
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Im uix,t) values 0.4 P

: e oA [\Mﬁm

x values f T
20 Vi

Re u(x,1) values

I =1 =3 =5 =10] [ =1 =2 t=5 =10]

Figure 2 Real and imaginary parts of solution of Example 1 form =2, 8 = g, and t =

1,3,5,10.
0.8
0.6
Im uix,t) values 0.4

) v = ﬁ o0.4-
Ty ; ‘-'vﬂvﬁ?%ﬂvﬁg
20

10 20
x values

Re u(x,t) values

I =1 =10] [ t=1 =10]

Figure 2 Real and imaginary parts of solution of Example 1 form =2, 8 = %, and t =
1,3,5,10.

E. Conclusion

The offset fractional Fourier transform has been applied in this work to derive the solution
of the generalized heat equation. By applying the transform to the differential operator and
leveraging the properties of OFrFT, we derive an analytical solution that incorporates the offset
parameters. This study demonstrates the potential of OFrFT in providing a more flexible
analytical framework for solving partial differential equations beyond the limitations of the
standard Fourier transform. Future research may focus on a deeper investigation of the
properties and uncertainty principles of OFrFT, as well as extend its application to explore
solutions of other equations, such as the Laplace equation, within the OFrFT framework.
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