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Abstract. In this work, the main objective is to find a solution to the general heat equation using the offset 

fractional Fourier transform (OFrFT), which is represents a generalized form of the solution of the heat equation 

using the classical Fourier transform. This method provides a broader analytical framework for solving partial 

differential equations such as the heat equation. Several illustrative examples are presented to demonstrate the 

effectiveness and power of the OFrFT in comparison with the classical Fourier transform. 
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 Intoduction 

The study of integral transforms has long been a cornerstone in the development of analyt 

ical and computational methods in mathematics, physics, and engineering. Among these, the 

classical Fourier transform has played a central role due to its powerful ability to decompose 

signals into frequency components, providing profound insights into the behavior of linear sys 

tems, solving differential equations, and enabling signal analysis. However, as the complexity 

of scientific problems has increased, so too has the need for more generalized tools. One such 

generalization is the fractional Fourier transform (FrFT), a powerful mathematical tool that 

interpolates between the time and frequency domains, offering a richer framework for analyzing 

and processing signals. 

The offset fractional Fourier transform (OFrFT) is a further extension of the FrFT, incor 

porating additional degrees of freedom that allow for more nuanced transformations. These 

additional parameters in the OFrFT offer enhanced flexibility, enabling improved modeling ca 

pabilities in systems where conventional transformations may fall short. The OFrFT can be 

viewed as a shifted and rotated version of the FrFT, capable of accommodating offset 

phenomena that naturally arise in various physical contexts. 

In recent years, the FrFT and its variants have seen rapid development and widespread 

adoption across several disciplines, including optics, quantum mechanics, signal processing, 

and applied mathematics. The fractional nature of the FrFT allows it to model intermediate 

domains between time and frequency, making it especially valuable in systems where chirp-

like signals or nonstationary processes dominate. For instance, in optical signal processing, the 

FrFT has been employed to model the propagation of light through quadratic graded-index 

media and lens systems (Bernardo & Soares, 1994; Mendlovich & Ozaktas, 1993; Ozaktas & 

Aytür, 1995; Ozaktas & Kutay, 2001; Liu et al., 1997). These works have demonstrated the 
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superiority of the FrFT in describing diffraction patterns, lens focusing behavior, and imaging 

systems under conditions where the classical Fourier framework proves inadequate. 

In the domain of quantum mechanics, the FrFT provides an elegant framework for de 

scribing wavefunctions and quantum states in phase space. The FrFT is closely related to the 

Wigner distribution and the linear canonical transform (LCT), making it a natural candidate for 

analyzing quantum harmonic oscillators, uncertainty principles, and eigenvalue problems. 

Pioneering works such as Namias (1980) and Qiu et al. (2019) have discussed the role of FrFT 

in quantum evolution and its connection to the Schrödinger equation, revealing the versatility 

of the fractional domain in modeling quantum dynamics. 

Despite these advances, there remains a gap in the literature concerning the use of the 

offset fractional Fourier transform (OFrFT) in solving partial differential equations (PDEs), 

partic ularly those that govern heat conduction, wave propagation, and diffusion processes. 

While several studies have applied the classical fractional Fourier transform (FrFT) and linear 

canoni cal transform (LCT) to address such equations (Bahri & Ashino, 2020; Namias, 1980; 

Prasad et al., 2014), the explicit role of the OFrFT in this context remains underexplored. The 

OFrFT, by incorporating spatial or temporal shifts along with rotation in the time-frequency 

plane, introduces an additional level of adaptability that can be leveraged to solve generalized 

forms of classical PDEs. The transformation allows for more flexible boundary modeling and 

can better accommodate inhomogeneities or nonstationarities in the medium. This paper seeks 

to fill that gap by exploring the utility of the OFrFT in solving a class of generalized heat 

equations, thereby extending the analytical toolkit for PDE-based modeling in complex 

systems. 

The heat equation is one of the most fundamental PDEs in mathematical physics, 

modeling the diffusion of heat in a given medium. Its classical solution via the Fourier transform 

is well-known; however, when the system exhibits nonstandard boundary conditions, variable 

diffusivity, or nonhomogeneous media, the standard Fourier framework may become 

insufficient. In such scenarios, the OFrFT offers a promising alternative. Prior efforts in this 

direction include Prasad et al. (2014), where the fractional Fourier transform was employed to 

solve the wave equation, generalizing classical results and demonstrating the advantages of 

fractional-domain analysis. Similarly, the work of Bahri and Ashino (2020) extended these 

ideas to both the heat and wave equations through the linear canonical transform, highlighting 

the theoretical richness and practical benefits of generalized transforms. 

Motivated by these developments, the primary goal of this study is to provide a rigorous 

analytical framework for solving the generalized heat equation using the offset fractional 

Fourier transform. Our contributions are threefold. First, we establish the mathematical 

foundation of the OFrFT, including its definition, key properties, and operational rules. 

Particular emphasis is placed on the convolution theorem, which serves as a vital tool for 

transforming and solving differential equations. We demonstrate that the convolution theorem 

in the OFrFT domain can be viewed as a generalization of its classical Fourier counterpart, 

enabling a broader class of functions and boundary conditions to be handled. 

Second, we formulate and solve the generalized heat equation within the OFrFT 

framework. We begin by applying the transform to the differential operator and deriving the 

transformed equation in the offset fractional domain. Utilizing the properties of the OFrFT, we 

obtain an analytical solution that accounts for the offset parameters, thus providing more 

accurate modeling in systems where standard assumptions are violated. Our approach offers a 

pathway for addressing initial and boundary value problems in heterogeneous media, where 

classical methods may falter. 

Third, to illustrate the practical implications and validate the effectiveness of the proposed 

method, we present a detailed example. The example involves a generalized heat conduction 

problem with spatially varying coefficients and nonhomogeneous boundary conditions. We 
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solve this problem analytically using the OFrFT framework and compare our results with those 

obtained through conventional methods. The comparison reveals that the OFrFT-based solution 

not only aligns with classical results under limiting conditions but also captures additional 

nuances introduced by the offset parameters. 

The implications of this research are far-reaching. Beyond heat conduction, the 

techniques developed herein can be extended to other types of PDEs, such as the Schr¨odinger 

equation, the diffusion equation, and even systems of coupled equations arising in fluid 

dynamics, elec tromagnetics, and financial mathematics. Moreover, the OFrFT may serve as a 

foundation for developing numerical schemes that incorporate transform-domain filtering, 

regularization, and spectral analysis. 

This study also contributes to the theoretical advancement of transform analysis by 

deepen ing our understanding of the relationship between the classical Fourier transform, the 

FrFT, and the OFrFT. Through the derivation of operational properties and their application to 

PDEs, we offer new insights into how generalized transforms can be systematically employed 

to address complex problems in applied science and engineering. 

In summary, this paper is organized as follows. Section B introduces the necessary 

mathematical preliminaries and notations used throughout the paper. The definition of the offset 

fractional Fourier transform and its useful properties is provided in Section C. In Section D, we 

formulate and solve the generalized heat equation under the OFrFT domain. We apply the 

transform to the differential operator and utilize the properties of OFrFT to obtain an analytical 

solution that includes the offset parameters. Finally, Section E concludes the paper by 

summarizing our main findings and suggesting potential avenues for future research. 

 Notations 

First, we outline several notations and lemmas that will serve as a foundation for the rest 

of this article. 

Definition 1. Where 1 ≤ 𝑝 < ∞, 𝐿𝑝(ℝ) denotes the Banach space of measurable functions on 

ℝ furnished with the norm 

‖𝑓‖𝐿𝑝(ℝ) = (∫ |𝑓(𝑥)|𝑝

ℝ

𝑑𝑥)

1
𝑝

< ∞. (1) 

More specifically, 𝐿𝑝(ℝ) becomes a Hilbert space with the standard inner product. 

〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅
ℝ

𝑑𝑥. (2) 

We now revisit the definition of the Fourier transform (FT) and its associated lemmas. 

Definition 2. The Fourier transform for a function 𝑓 belonging to 𝐿1(ℝ) is expressed by 

𝑓(𝜂) = ℱ{𝑓}(𝜂) =
1

√2𝜋
∫ 𝑒−𝑖𝜂𝑥𝑓(𝑥)

ℝ

𝑑𝑥, 𝜂 ∈ ℝ, (3) 

and for all 𝑓, 𝑓 ∈ 𝐿1(ℝ), the inversion formula is calculated as 

𝑓(𝑥) = ℱ−1{ 𝑓(𝜂)}(𝑥) =
1

√2𝜋
∫ 𝑒𝑖𝜂𝑥𝑓(𝜂)

ℝ

𝑑𝜂, 𝑥 ∈ ℝ. (4) 

Lemma 1. The Fourier transform corresponding to a Gaussian function is 

ℱ{𝑒−𝛼𝑥2
}(𝜂) =

1

√2𝛼
𝑒−

𝜂2

4𝛼, (5) 

with 𝛼 > 0. 

Lemma 2. The Fourier transform corresponding to the Poisson kernel is 
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ℱ {√
2

𝜋

𝑦

𝑥2 + 𝑦2
} (𝜂) = 𝑒−𝑦|𝜂|. (6) 

Definition 3. Suppose 𝑓 ∈ 𝐿1(ℝ). Translation, modulation and dilation operators of the 

function 𝑓 are formulated as follows 

 

𝑇𝑎𝑓(𝑥) = 𝑓(𝑥 − 𝑎), 𝑀𝑏𝑓(𝑥) = 𝑒𝑖𝑏𝑥𝑓(𝑥), 𝐷𝑐𝑓(𝑥) =
1

√|𝑐|
𝑓 (

𝑥

𝑐
), (7) 

where a, b, c are real constants. 

Definition 4. Let 𝑓 ∈ 𝐿1(ℝ), then the convolution of the functions 𝑓 and 𝑔, symbolized by 𝑓 ∗
𝑔 is defined as 

(𝑓 ∗ 𝑔)(𝑥) =
1

√2𝜋
𝑓(𝑡)𝑔(𝑥 − 𝑡)𝑑𝑡, (8) 

and 

ℱ{𝑓 ∗ 𝑔}(𝜂) = ℱ{𝑓}(𝜂)ℱ{𝑔}(𝜂). (9) 

 Offset Fractional Fourier Transform and Properties 

Definition 5. For 𝑓 ∈ 𝐿1(ℝ), the offset fractional Fourier transform (OFrFT) of the 

function 𝑓 is given by 

ℱ𝕆
(𝛼,𝑚,𝑛)

{𝑓}(𝜂) = ∫ 𝑓(𝑡)𝒦(𝛼,𝑚,𝑛)(𝑡, 𝜂)𝑑𝑡,
ℝ

 (10) 

with the kernel function 𝒦(𝛼,𝑚,𝑛)(𝑡, 𝜂) takes the form 

𝒦(𝛼,𝑚,𝑛)(𝑡, 𝜂) = 𝐴𝛼𝑒
𝑖
2

𝑚2 cot 𝛼𝑒
𝑖
2

((𝜂2+𝑡2) cot 𝛼+2𝑡(𝑚−𝜂) csc 𝛼+2𝜂(𝑛−𝑚 cot 𝛼)). (11) 

At this point, parameters (𝛼, 𝑚, 𝑛) are real numbers and 𝛼 ≠ 𝑛𝜋, 𝑛 ∈ ℤ. 

Theorem 1. For all 𝑓 ∈ 𝐿1(ℝ) and ℱ𝕆
(𝛼,𝑚,𝑛)

{𝑓} ∈ 𝐿1(ℝ), the inverse of the offset fractional 

Fourier transform is defined by 

𝑓(𝑡) = ∫ ℱ𝕆
(𝛼,𝑚,𝑛){𝑓}(𝜂)𝒦(𝛼,𝑚,𝑛)(𝑡, 𝜂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑑𝜂

ℝ

. (12) 

Theorem 2. Consider that 𝑓(𝑡) to be continuously differentiable. If we take as an 

assumption that 

lim
|𝑡|→∞

𝑓(𝑡) = 0, (13) 

then 

ℱ𝕆
(𝛼,𝑚,𝑛)

{
𝑑𝑛𝑓

𝑑𝑡𝑛
} (𝜂) = (𝑖(𝜂 − 𝑚 − 𝑛 cot 𝛽) sin 𝛽 + cos 𝛽

𝑑

𝑑𝜂
)

𝑛

ℱ𝕆
(𝛼,𝑚,𝑛){𝑓}(𝜂). (14) 

Theorem 3. Suppose 𝒦(𝛽,𝑚,𝑛) be the kernel of the OFrFT. We express 𝐷̅𝑛 as follows 

𝐷̅𝑛 = (
𝜕

𝜕𝑡
− 𝑖(𝑡 cot 𝛽 + 𝑚 csc 𝛽)𝑛), (15) 

Thus, for all 𝑛 ∈ ℕ, it holds that 

i. 𝐷̅𝑛𝒦(𝛽,𝑚,𝑛) = (−𝑖𝜂 csc 𝛽)𝑛𝒦(𝛽,𝑚,𝑛), 

ii. ∫ 𝐷̅𝑛𝒦(𝛽,𝑚,𝑛)ℝ
𝑑𝑡 = ∫ 𝒦(𝛽,𝑚,𝑛)𝐷̅𝑛

ℝ
𝑓(𝑡)𝑑𝑡, 

iii. ℱ𝕆
(𝛼,𝑚,𝑛){𝐷̅𝑛𝑓(𝑡)}(𝜂) = (𝑖𝜂 csc 𝛽)𝑛ℱ𝕆

(𝛼,𝑚,𝑛){𝑓}(𝜂), 

with 𝐷̅𝑛 =
𝜕

𝜕𝑡
− 𝑖(𝑡 cot 𝛽 + 𝑚 csc 𝛽). 
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 Offset Fractional Fourier Transform for Generalized Heat Equation 

In the following sections, we apply the offset fractional Fourier transform (OFrFT) to 

address generalized heat equations. We begin by expressing the one-dimensional heat equation 

in the OFrFT domain. 
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
= 𝑐2(𝐷̅𝑥

∗)2𝑢(𝑥, 𝑡), 𝑥 ∈ ℝ, 𝑡 ∈ (0, ∞). (16) 

In this setting, the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥) belongs to 𝐿1(ℝ), and 𝐷̅𝑥
∗ is specified by 

equation (15) where 𝑐 represents an arbitrary constant. 

Applying the FrFT with respect to 𝑥 on both sides of equation (16) yields 

∫ 𝒦(𝛽,𝑚,𝑛)
ℝ

(𝑥, 𝜂)
𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
𝑑𝑥 = 𝑐2 ∫ 𝒦(𝛽,𝑚,𝑛)

ℝ

(𝑥, 𝜂)(𝐷̅𝑥
∗)2𝑢(𝑥, 𝑡)𝑑𝑥. (17) 

One can rewrite this equation as 

𝜕𝑢0
(𝛽,𝑚,𝑛)

(𝑥, 𝑡)

𝜕𝑡
= −𝑐2𝜂2 csc2 𝛽 𝑢0

(𝛽,𝑚,𝑛)(𝑥, 𝑡). (18) 

It follows that 

𝑢0
(𝛽,𝑚,𝑛)

(𝜂, 𝑡) = 𝐶𝑒−𝑐2𝜂2 csc2 𝛽 𝑡, (19) 

with 𝐶 denotes an arbitrary constant. 

Considering the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥), it can be shown that 

𝑢0
(𝛽,𝑚,𝑛)(𝑥, 0) = ∫ 𝒦(𝛽,𝑚,𝑛)

ℝ

(𝑥, 𝜂)𝑓(𝑥)𝑑𝑥 = 𝐶. (20) 

Replacing (20) in (19) gives 

𝑢0
(𝛽,𝑚,𝑛)(𝑥, 𝑡) = (∫ 𝒦(𝛽,𝑚,𝑛)

ℝ

(𝑥, 𝜂)𝑓(𝑥)𝑑𝑥) 𝑒−𝑐2𝜂2 csc2 𝛽 𝑡. (21) 

Taking the inverse of the FrFT in (21), we see that 

𝑢(𝑥, 𝑡) = (ℱ𝕆
(𝛽,𝑚,𝑛)

)
−1

{𝑢0
(𝛽,𝑚,𝑛)(𝑥, 𝑡)} (𝜂, 𝑡). (22) 

As a consequence of equation (12), we additionally obtain 

𝑢(𝑥, 𝑡)   

= (ℱ𝕆
(𝛽,𝑚,𝑛)

)
−1

{𝑢0
(𝛽,𝑚,𝑛)(𝑥, 𝑡)} (𝜂, 𝑡) 

= 𝐴𝛽
̅̅̅̅ ∫ 𝑒

−
𝑖
2

((𝜂2+𝑥2+𝑚2) cot 𝛽+2𝑥(𝑚−𝜂) csc 𝛽+2𝜂(𝑛−𝑚 cot 𝛽))

ℝ

 

× (𝐴𝛽) ∫ 𝑒
𝑖
2

((𝜂2+𝑥2+𝑚2) cot 𝛽+2𝑥(𝑚−𝜂) csc 𝛽+2𝜂(𝑛−𝑚 cot 𝛽))

ℝ

𝑓(𝑥)𝑑𝑥 𝑒−𝑐2𝜂2 csc2 𝛽 𝑡𝑑𝜂 

= |𝐴𝛽|
2

∫ 𝑒−
𝑖
2

(𝑥2 cot 𝛽+2𝑥(𝑚−𝜂) csc 𝛽)

ℝ

(∫ 𝑒
𝑖
2

(𝑥2 cot 𝛽+2𝑥(𝑚−𝜂) csc 𝛽)

ℝ

𝑓(𝑥)𝑑𝑥) 𝑒−𝑐2𝜂2 csc2 𝛽 𝑡𝑑𝜂 

= |𝐴𝛽|
2

∫ 𝑒−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽

ℝ

 

× ∫ 𝑒𝑖𝑥𝑚 csc 𝛽

ℝ

(∫ 𝑒
𝑖𝑥2 cot 𝛽

2
+𝑖𝑥𝑚 cot 𝛽𝑒−𝑖𝑥𝜂 csc 𝛽𝑓(𝑥)

ℝ

𝑑𝑥) 𝑒−𝑐2𝜂2 csc2 𝛽 𝑡𝑑𝜂. (23) 

Set 

𝑔(𝛽,𝑚)(𝑥) = 𝑒
𝑖𝑥2 cot 𝛽

2
+𝑖𝑥𝑚 cot 𝛽𝑓(𝑥), (24) 

and  

𝜂 csc 𝛽 = 𝑣. (25) 

Equation (23) above implies that 

𝑢(𝑥, 𝑡)   
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= |𝐴𝛽|
2

𝑒−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 sin 𝛽 ∫ 𝑒𝑖𝑥𝑣

ℝ

(∫ 𝑔(𝛽,𝑚)(𝑥)
ℝ

𝑒−𝑖𝑥𝑣𝑑𝑥) 𝑒−𝑐2𝑣2 𝑡𝑑𝑣 

= |𝐴𝛽|
2

𝑒−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 sin 𝛽 √2𝜋 ∫ 𝑒𝑖𝑥𝑣𝑒−𝑐2𝑣2 𝑡

ℝ

(
1

√2𝜋
∫ 𝑔(𝛽,𝑚)(𝑥)

ℝ

𝑒−𝑖𝑥𝑣𝑑𝑥) 𝑑𝑣 

= √2𝜋 sin 𝛽 |𝐴𝛽|
2

𝑒−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 ∫ 𝑒𝑖𝑥𝑣𝑒−𝑐2𝑣2 𝑡

ℝ

ℱ{𝑔(𝛽,𝑚)}(𝑥)𝑑𝑣. (26) 

In view of equation (5), we have 

ℱ {
1

√2𝑐2𝑡
𝑒

−
𝑥2

4𝑐2𝑡} (𝑣) = 𝑒−𝑐2𝑣2 𝑡. (27) 

Inserting equation (27) into equation (26) yields 

𝑢(𝑥, 𝑡)   

= √2𝜋 sin 𝛽 |𝐴𝛽|
2

𝑒−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 ∫ 𝑒𝑖𝑥𝑣ℱ {
1

√2𝑐2𝑡
𝑒

−
𝑥2

4𝑐2𝑡} (𝑣)
ℝ

ℱ{𝑔(𝛽,𝑚)}(𝑥)𝑑𝑣 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑐2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 ∫ ℱ {𝑒
−

𝑥2

4𝑐2𝑡} (𝑣)
ℝ

ℱ{𝑔(𝛽,𝑚)}(𝑣)𝑒𝑖𝑥𝑣𝑑𝑣. (28) 

Applying equation (9) to equation (28) leads to 

𝑢(𝑥, 𝑡) 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑐2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 (ℱ𝕆
(𝛽,𝑚,𝑛)

)
−1

{ℱ {𝑒
−

𝑥2

4𝑐2𝑡} (𝑣)ℱ{𝑔(𝛽,𝑚)}(𝑣)} (𝑥, 𝑡) 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑐2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 (𝑒
−

𝑥2

4𝑐2𝑡 ∗ 𝑔(𝛽,𝑚)(𝑥)) (𝑦) 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑐2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 (𝑒
−

𝑥2

4𝑐2𝑡 ∗ 𝑒
𝑖𝑥2 cot 𝛽

2
+𝑖𝑥𝑚 csc 𝛽𝑓(𝑥)) (𝑦) 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑐2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 ∫ 𝑒
−

(𝑥−𝑦)2

4𝑐2𝑡 𝑒
𝑖𝑦2 cot 𝛽

2
+𝑖𝑦𝑚 csc 𝛽𝑓(𝑦)

ℝ

𝑑𝑦. (29) 

Specifically, if 𝛽 =
𝜋

2
, relation (29) simplifies to 

𝑢(𝑥, 𝑡) =
1

√4𝜋𝑐2𝑡
∫ 𝑒

−
(𝑥−𝑦)2

4𝑐2𝑡 𝑓(𝑦)
ℝ

𝑑𝑦, (30) 

representing the solution to the heat equation through the classical Fourier transform.  

When 𝑚 = 0, relation (29) above reduce to 

𝑢(𝑥, 𝑡) =
𝑒

𝑖𝑥2 cot 𝛽
2

√4𝜋𝑐2𝑡
∫ 𝑒

−
(𝑥−𝑦)2

4𝑐2𝑡 𝑒
𝑖𝑦2 cot 𝛽

2 𝑓(𝑦)
ℝ

𝑑𝑦, (31) 

which is the solution of the heat equation using the classical Fourier transform.  

An example is presented below to support and illustrate the preceding result. 

Example 1. Determine the solution 𝑢(𝑥, 𝑡) of equation (29) with  𝑐 = 1 and 

𝑓(𝑥) = {
1, |𝑥| < 2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (32) 

Solution. Using (32) together with (29), we arrive at 

𝑢(𝑥, 𝑡) 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 ∫ 𝑒−
(𝑥−𝑦)2

4𝑡 𝑒
𝑖𝑦2 cot 𝛽

2
+𝑖𝑦𝑚 csc 𝛽

2

−2

𝑑𝑦 
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=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽 ∫ 𝑒−
(𝑥2−𝑦2−2𝑥𝑦)

2

4𝑡 𝑒
𝑖
2

𝑦2 cot 𝛽+𝑖𝑦𝑚 csc 𝛽
2

−2

𝑑𝑦 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡 ∫ 𝑒−(
1
4𝑡

−
𝑖
2

cot 𝛽)𝑦2+(
2𝑥
4𝑡

+𝑖𝑚 csc 𝛽)𝑦
2

−2

𝑑𝑦. (33) 

Equation (33) may be reformulated as 

𝑢(𝑥, 𝑡) 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡 ∫ 𝑒

−(
1
4𝑡

−
𝑖
2

cot 𝛽)(𝑦2−
(

2𝑥
4𝑡

+𝑖𝑚 csc 𝛽)

(
1
4𝑡

−
𝑖
2

cot 𝛽)
𝑦)2

−2

𝑑𝑦 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡 ∫ 𝑒
−(

1
4𝑡

−
𝑖
2

cot 𝛽)(𝑦2−
(2𝑥+𝑖4𝑡𝑚 csc 𝛽)

1−𝑖2𝑡 cot 𝛽
𝑦)

2

−2

𝑑𝑦. (34) 

The preceding equation yields 

𝑢(𝑥, 𝑡) =
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡  

× ∫ 𝑒
−(

1
4𝑡

−
𝑖
2

cot 𝛽)((𝑦−
1
2

(
2𝑥+𝑖4𝑡𝑚 csc 𝛽

1−𝑖2𝑡 cot 𝛽
))

2

−
1
4

(
2𝑥+𝑖4𝑡𝑚 csc 𝛽

1−𝑖2𝑡 cot 𝛽
)

2

)2

−2

𝑑𝑦 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡  

× ∫ 𝑒
−(

1
4𝑡

−
𝑖
2

cot 𝛽)(𝑦−
1
2

(
2𝑥+𝑖4𝑡𝑚 csc 𝛽

1−𝑖2𝑡 cot 𝛽
))

2

𝑒
1

16𝑡
 
(2𝑥+𝑖4𝑡𝑚 csc 𝛽)2

1−𝑖2𝑡 cot 𝛽
2

−2

𝑑𝑦 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒

−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡
+

1
16𝑡

 
(2𝑥+𝑖4𝑡𝑚 csc 𝛽)2

1−𝑖2𝑡 cot 𝛽  

× ∫ 𝑒
−(

1
2

(
2𝑥+𝑖4𝑡𝑚 csc 𝛽

1−𝑖2𝑡 cot 𝛽
)√ 1

4𝑡
−

𝑖
2

cot 𝛽−√ 1
4𝑡

−
1
2

cot 𝛽𝑦)

2
2

−2

𝑑𝑦. (35) 

Let 

𝑣 =
1

2
√

1

4𝑡
−

𝑖

2
cot 𝛽 (

2𝑥 + 𝑖4𝑡𝑚 csc 𝛽

1 − 𝑖2𝑡 cot 𝛽
) − √

1

4𝑡
−

1

2
cot 𝛽 𝑦, (36) 

then, 

𝑢(𝑥, 𝑡) =
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡
𝑒

−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡
+

1
16𝑡

 
(2𝑥+𝑖4𝑡𝑚 csc 𝛽)2

1−𝑖2𝑡 cot 𝛽  

× ∫ 𝑒−𝑣2

1
2

√ 1
4𝑡

−
𝑖
2

cot 𝛽(
2𝑥+𝑖4𝑡𝑚 csc 𝛽

1−𝑖2𝑡 cot 𝛽
)−2√ 1

4𝑡
−

𝑖
2

cot 𝛽

1
2

√ 1
4𝑡

−
𝑖
2

cot 𝛽(
2𝑥+𝑖4𝑡𝑚 csc 𝛽

1−𝑖2𝑡 cot 𝛽
)+2√ 1

4𝑡
−

𝑖
2

cot 𝛽

𝑑𝑣

√ 1
4𝑡 −

𝑖
2 cot 𝛽

 

=
√2𝜋 sin 𝛽 |𝐴𝛽|

2

√2𝑡√ 1
4𝑡 −

𝑖
2 cot 𝛽

𝑒
−

𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡
+

1
16𝑡

 
(2𝑥+𝑖4𝑡𝑚 csc 𝛽)2

1−𝑖2𝑡 cot 𝛽  

× (√
𝜋

2
(erf (

1

2
√

1

4𝑡
−

𝑖

2
cot 𝛽 (

2𝑥 + 𝑖4𝑡𝑚 csc 𝛽

1 − 𝑖2𝑡 cot 𝛽
) − 2√

1

4𝑡
−

𝑖

2
cot 𝛽)) − erf (

1

2
√

1

4𝑡
−

𝑖

2
cot 𝛽 (

2𝑥 + 𝑖4𝑡𝑚 csc 𝛽

1 − 𝑖2𝑡 cot 𝛽
) + 2√

1

4𝑡
−

𝑖

2
cot 𝛽)). 
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As a result, 

𝑢(𝑥, 𝑡) 

=
2√2

√1 − 𝑖2𝑡 cot 𝛽
𝑒

−
𝑖
2

𝑥2 cot 𝛽−𝑖𝑥𝑚 csc 𝛽−
𝑥2

4𝑡
+

1
16𝑡

 
(2𝑥+𝑖4𝑡𝑚 csc 𝛽)2

1−𝑖2𝑡 cot 𝛽  

× (erf (
1

2
√

1

4𝑡
−

𝑖

2
cot 𝛽 (

2𝑥 + 𝑖4𝑡𝑚 csc 𝛽

1 − 𝑖2𝑡 cot 𝛽
) − 2√

1

4𝑡
−

𝑖

2
cot 𝛽)) − erf (

1

2
√

1

4𝑡
−

𝑖

2
cot 𝛽 (

2𝑥 + 𝑖4𝑡𝑚 csc 𝛽

1 − 𝑖2𝑡 cot 𝛽
) + 2√

1

4𝑡
−

𝑖

2
cot 𝛽) . 

(37) 

At this point, 

erf(𝜂) =
2

𝜋
∫ 𝑒−𝑧2

𝑑𝑧
𝜂

0

, (38) 

holds for all values of 𝜂. The simulation of equation (37) with 𝑐 = 1 and under varying 𝛽 and  

𝑚 are summarized in Table 1.  

Table 1 The solutions obtained for Example 1 for 𝑐 = 1 and different values of 𝛽 and 𝑚. 

𝜷 𝒄 𝒎 𝒖(𝒙, 𝒕) 
𝜋

2
 1 0 1

2
(erf (

𝑥 − 2

2√𝑡
) − erf (

𝑥 + 2

2√𝑡
)) 

𝜋

3
 

1 2 2√2

√√3 − 𝑖2𝑡

√3

𝑒
−(

𝑖

2√3
+

1
4𝑡−

√3

4𝑡(√3−𝑖2𝑡)
)𝑥2+(

𝑖4𝑡

√3−𝑖2𝑡
−

𝑖4

√3
)𝑥−

16√3𝑡

3(√3−𝑖2𝑡) 

× (erf (
1

2
√

√3 − 𝑖2𝑡

4𝑡√3
(

2√3 + 𝑖16𝑡

√3 − 𝑖2𝑡
) − 2√

√3 − 𝑖2𝑡

4𝑡√3
) − erf (

1

2
√

√3 − 𝑖2𝑡

4𝑡√3
(

2√3 + 𝑖16𝑡

√3 − 𝑖2𝑡
) + 2√

√3 − 𝑖2𝑡

4𝑡√3
)) 

𝜋

4
 1 2 2√2

√1 − 2𝑡
𝑒

−(
𝑖
2+

1
4𝑡−

1
4𝑡(1−𝑖2𝑡)

)𝑥2+(
𝑖2𝑡

1−𝑖2𝑡
−2𝑖)𝑥−

4𝑡
1−𝑖2𝑡 

× (erf (
1

2
√

1

4𝑡
−

𝑖

2
(

2𝑥 + 𝑖8𝑡

𝑖 − 𝑖2𝑡
) − 2√

1

4𝑡
−

𝑖

2
) − erf (

1

2
√

1

4𝑡
−

𝑖

2
(

2𝑥 + 𝑖8𝑡

𝑖 − 𝑖2𝑡
) + 2√

1

4𝑡
−

𝑖

2
)) 

As shown in Table 1, for 𝛽 =
𝜋

2
 and 𝑚 = 0, equation (37) simplifies to 

𝑢(𝑥, 𝑡) =
1

2
(erf (

𝑥 − 2

2√𝑡
) − erf (

𝑥 + 2

2√𝑡
)), (39) 

which closely resembles to the solution of the classical heat equation using the Fourier 

transform as illustrated in Figure 1. Figures 2 and 3 present the solution of Example 1 with 𝑚 =
2 and several time values at each specified value of 𝛽. 

 
Figure 1 Real part of solution of Example 1 for 𝒎 = 𝟎,  𝜷 =

𝝅

𝟐
, and 𝒕 = 𝟏, 𝟑, 𝟓, 𝟏𝟎. 
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Figure 2 Real and imaginary parts of solution of Example 1 for 𝒎 = 𝟐,  𝜷 =

𝝅

𝟑
, and 𝒕 =

𝟏, 𝟑, 𝟓, 𝟏𝟎. 

 
Figure 2 Real and imaginary parts of solution of Example 1 for 𝒎 = 𝟐,  𝜷 =

𝝅

𝟒
, and 𝒕 =

𝟏, 𝟑, 𝟓, 𝟏𝟎. 

 Conclusion 

The offset fractional Fourier transform has been applied in this work to derive the solution 

of the generalized heat equation. By applying the transform to the differential operator and 

leveraging the properties of OFrFT, we derive an analytical solution that incorporates the offset 

parameters. This study demonstrates the potential of OFrFT in providing a more flexible 

analytical framework for solving partial differential equations beyond the limitations of the 

standard Fourier transform. Future research may focus on a deeper investigation of the 

properties and uncertainty principles of OFrFT, as well as extend its application to explore 

solutions of other equations, such as the Laplace equation, within the OFrFT framework. 
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