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Abstract. The aim of this paper is to discuss about the theory of involute and evolute of pseudo-null and null 
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 Introduction 

Theory of curves in Minkowski space is very interesting for mathematics and physics. 

One of the most important application of theory of curves in Minkowski spaces is related to 

special and general relativity theory (Formiga & Romero, 2008). Because metric in Minkowski 

space is different from the metric in Euclidean space, therefore some problems become a little 

stange and different. However, theories of curve in Minkoswki space are generally developep 

by using the properties of curve in Euclidean space but in different metric.  

Minkowski space is the metric space ℝ1
3 defined by Minkowski metric 

 
⟨𝑢, 𝑣⟩ = −𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 

 

for all 𝑢, 𝑣 ∈ ℝ. In this paper, the Minkowski space will be denoted by 𝐸1
3. 

The norm of 𝑢 ∈ 𝐸1
3 is defined by ‖𝑢‖ = √|⟨𝑢, 𝑢⟩|. A vector 𝑢 ∈ 𝐸1

3 is called spacelike 

if ⟨𝑢, 𝑢⟩ > 0, timelike ⟨𝑢, 𝑢⟩ < 0, and null or lightlike if ⟨𝑢 , 𝑢⟩ = 0, 𝑢 ≠ 0. The Lorentzian 

vector product of 𝑢 and 𝑣 in 𝐸1
3 is defined by 

 

𝑢 × 𝑣 = (−𝑢2𝑣3 + 𝑢3𝑣2, 𝑢1𝑣3 − 𝑢3𝑣1, 𝑢1𝑣2 − 𝑢2𝑣1). 
 

A curve 𝛼: 𝐼 → 𝐸1
3 is said spacelike (resp. timelike, null) at 𝑡 ∈ 𝐼 if 𝛼′(𝑡) is a spacelike 

(resp. timelike, null) vector. In case 𝛼′(𝑡) is a spacelike (resp. timelike, null) vector for all 𝑡 ∈
𝐼, then 𝛼 is a spacelike (resp. timelike, null).  For non null curves, the arc-length is defined as 

𝑠 = √|⟨𝛼′, 𝛼′⟩| while for null curves, the pseudo arc-length is defined as 𝑠 = √|⟨𝛼′′, 𝛼′′⟩|. If 
|⟨𝛼′, 𝛼′⟩| = 1, the non null curve is said patametrized by arc-length, and if |⟨𝛼′, 𝛼′⟩| = 1, the 

null curve is said parametrized by pseudo arc-length. Theory of curves in Minkowski space has 

been studied by many mathematicians such as Sasaki (2010); Ferrandez, Gimenez & Lucas 

(2002); Lopez (2014); and Inoguchi & Lee (2008). Furthermore, the applications of the curves 

in Minkowski space have been study by Duggal (1996, 2007), Mohajan (2013), and O’neill 

(1983). 

The theory of invoute and evolute was firstly introduced by C. Huygens in 1673 in 1673 

when he tried to build an accurate clock called isochronous pendulum clock. He found that 

isochronous curve is an arc of cycloid and that involute of cycloid is a similar cycloid (Merzach 

and Boyer, 2010) . In classical differential geometry, a curve 𝛼∗ is called an involute of 𝛼 if 
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curve 𝛼∗ is lying in the tangent surface of α and their tangent lines are perpendicular in all point 

on the curves. Conversely, 𝛼 is called the evolute of 𝛼∗. This concept can be applied to the 

curve in semi-Riemann geometry, especially in Minkowski space. The theory of involute-

evolute of curves in Minkowski has been studied by many mathematicians such as Bukcu and 

Karacan (2009, 2007a, 2007b), Almaz & Kulahci (2018) and Hanif, Hou and Nesovic (2019).  

In this paper, we introduce the different kind of curves in Minkowski space based on the 

causality character of their tangent vectors and their Frenet equations. In the next section we 

introduce the concept of Involute of curves in Minkowski space. In this section the discussion 

will be discussed separately based on the type of curves in Minkowski space. In the last section 

the evolute of the different curves in Minkowski space are provided with some their properties.  

 Preliminaries 

Let {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} be a Frenet trihedron in 3-dimensional Minkowski space. Assume 

tha the curve is parametrized by the arc-length or pseudo arc-length 𝑠 and 𝑇(𝑠) is the tangent 

vector of the curve 𝛼(𝑠). Unlike those in Euclidean space, curve in Minkowski space have some 

special cases as follows: 

1. if the curve is null, then 𝐵(𝑠) is also null which implies {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} is not 

orthogonal basis. In this case, we will aply null frame for finding the Frenet equations 

of the curves. 

2. if the curves are non null curves, we assume {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} is orthonormal basis 

in 𝐸1
3. The binormal vector 𝐵(𝑠) will be always defined as the cross product between 

tangent vector 𝑇(𝑠) and normal vector 𝑁(𝑠). Moreover, the basis {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} 

can be either positively or negatively oriented. The basis is positively oriented if 𝐵(𝑠) 

is a timelike vector and negatively oriented if 𝐵(𝑠) is a spacelike vector. 

3. it will be desirable that in the case {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} is an orthonormal basis, this 

basis is future-directed. This cannot assume priori. Even in the case that the curve is 

a timelike, 𝑇(𝑠) could not be future-oriented. 

Now, let 𝛼: 𝐼 → 𝐸1
3 be a regular curve parametrized by arc-length or pseudo arc-length 𝑠, 

then 𝑇(𝑠) is the unit tangent vector at 𝑠 since ⟨𝑇(𝑠), 𝑇(𝑠)⟩ is a constant with value −1, 0, or 0 

depending whether the curve is timelike, spacelike, or null respectively. 

Pseudonull curve 𝛽(𝑠) is a spacelike curve with null principal normal vector. The vector 

𝑇′(𝑠) is a null for all 𝑠. Since we have null vectors then the basis {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} is not 

orthonormal basis in 𝐸1
3. Therefore, to find the Frenet equation, we must apply null frame 

concept. We define the normal vector as 𝑁(𝑠) = 𝑇′(𝑠), which is linearly independent with 

𝑇(𝑠). Let 𝐵(𝑠) be the unique lightlike such that ⟨𝑁(𝑠), 𝐵(𝑠)⟩ = 1, and it is orthogonal to 𝑇(𝑠). 

The vector 𝐵(𝑠) is binormal vector of 𝛽 at 𝑠. The Frenet equations are 

 

(
𝑇′(𝑠)

𝑁′(𝑠)

𝐵′(𝑠)
) = (

0 1 0
0 𝜏 0

−1 0 −𝜏
) (

𝑇(𝑠)

𝑁(𝑠)

𝐵(𝑠)
) (1) 

 

The function 𝜏 is called the pseudo-torsion of 𝛽(𝑠)and it is obtained by 𝜏 = ⟨𝑁′(𝑠), 𝐵(𝑠)⟩. 
In the case we do not know if its is positively or negatively oriented. 

Let 𝛼(𝑠) be a null curve parametrized by pseudo arc-length 𝑠. Then the tangent vector 

𝑇(𝑠) is also a null vector. Since we have null vector as a component of basis, then the basis 

{𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)} is not orthonormal in 𝐸1
3 and we must apply the null frame concept to find 

the Frenet equations. Define the normal vector 𝑁(𝑠) = 𝑇′(𝑠) which is a unite spacelike vector. 
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We also define the binormal vector 𝐵(𝑠), the unit null vector which is orthogonal to normal 

vector 𝑁(𝑠) and ⟨𝑇(𝑠), 𝐵(𝑠)⟩ = 1. Therefore, the Frenet equations are 

 

(
𝑇′(𝑠)

𝑁′(𝑠)

𝐵′(𝑠)
) = (

0 1 0
𝜏 0 −1
0 −𝜏 0

) (
𝑇(𝑠)

𝑁(𝑠)

𝐵(𝑠)
) (1) 

 

where the pseudo-torsion of 𝛼(𝑠) is 𝜏 = ⟨𝑁′(𝑠), 𝐵(𝑠)⟩ (Lopez, 2014). 

 Main Results 

1. Involutes of Pseudo-Null and Null Curves in Minkowski 3-Space 

Definition 1. Let 𝑟: 𝐼 → 𝐸1
3 and 𝑟∗: 𝐼 → 𝐸1

3 be curves in Minkowski 3-spaces. For all 𝑠 ∈ 𝐼, 

𝑟∗(𝑠) is called the involute of 𝑟(𝑠) if the tangent vector or 𝑟 at point 𝑟(𝑠) passes through the 

tangent at the point 𝑟∗(𝑠) of the curve 𝑟∗(𝑠) and  
〈𝑇∗(𝑠), 𝑇(𝑠)〉 = 0 (3) 

where 𝑇∗ and 𝑇 ate the tangent vectors of 𝑟 and 𝑟∗, respectively.  

 

Theorem 1. Let 𝛽: 𝐼 → 𝐸1
3 be a pseudonull or null curve parametrized by arc-length 𝑠 and 

𝛽∗: 𝐼 → 𝐸1
3 be its involutes. Let 𝑐 be a constant real number, then  

𝛽∗(𝑠) = 𝛽(𝑠) + (𝑐 − 𝑠)𝑇(𝑠) (4) 

where 𝑇(𝑠) is the tangent vector of 𝛽(𝑠).   

Proof. Let 𝛽(𝑠) be a pseudonull or null curve in Minkowski 3-spaces. The tangent lines of the 

curve 𝛽(𝑠) will construct a tangent surface. 𝛽∗(𝑠) is the involute of 𝛽(𝑠) if 𝛽∗(𝑠) lies on the 

tangen surface and orthogonal to all tangent line of 𝛽(𝑠). Let 𝑥∗ be the point in 𝛽∗(𝑠) which 

crosses the tangent line 𝑇(𝑠) of 𝛽(𝑠) at point 𝑥. Then, 𝑥∗ − 𝑥 is proportional to 𝑇(𝑠). As a 

consequence, 𝛽∗(𝑠) can be represented in the form of 𝑥∗(𝑠) = 𝑥(𝑠) + 𝑘(𝑠)𝑇(𝑠) for some value 

of constans depending on 𝑠. Therefore, the tangent vector of 𝛼∗(𝑠) will be  

𝛽∗′(𝑠) = 𝛽′(𝑠) + 𝑘′(𝑠)𝑇(𝑠) + 𝑘(𝑠)𝑇′(𝑠)  

= (1 + 𝑘′(𝑠))𝑇(𝑠) + 𝑘(𝑠)𝜅(𝑠)𝑁(𝑠)  

By Definition 1, this tangent vector is orthogonal to 𝑇 which implies 

0 = 〈𝛽∗ ⋅ 𝑇〉 = (1 + 𝑘′)⟨𝑇, 𝑇⟩ + 𝑘𝜅⟨𝑁, 𝑇⟩. 
It follows that  

1 + 𝑘′ = 0.     (5) 

Integrating equation (5) gives 𝑘 = −𝑠 + 𝑐, for some constant 𝑐. As a consequence, there exists 

an infinite family of involutes and the equation of the involute curves 𝛽∗(𝑠) is given by equation 

(4) as desired. 

 

Theorem 2. Let 𝛽: 𝐼 → 𝐸1
3 be a pseudonull or null curve parametrized by arc-length 𝑠 and 

𝛽∗: 𝐼 → 𝐸1
3 be its involute. Then the distance between 𝛽(𝑠) and 𝛽∗(𝑠) is |𝑐 − 𝑠|. 

Proof. By equation (4), we have 

𝛽∗(𝑠) − 𝛽(𝑠) = (𝑐 − 𝑠)𝑇(𝑠). 
Therefore,  

‖𝛽∗(𝑠) − 𝛽(𝑠)‖ = ‖(𝑐 − 𝑠)𝑇(𝑠)‖ = |𝑐 − 𝑠|‖𝑇(𝑠)‖ = |𝑐 − 𝑠|. 
Theorem 3. Let 𝛽: 𝐼 → 𝐸1

3 be a pseudonull curve in Minkowski 3-space parametrized by the 

arc-length 𝑠. Then the involute 𝛽∗(𝑠) of 𝛽(𝑠) is a null curve. 

Proof. Taking derivative of equation (4) and using equation (2) give us 

𝛽∗′(𝑠) = 𝑇(𝑠) + (𝑐 − 𝑠)𝑁(𝑠) − 𝑇(𝑠) = (𝑐 − 𝑠)𝑁(𝑠). 
Since the principal normal vector 𝑁(𝑠) is null, then we have  
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⟨𝛽∗′(𝑠), 𝛽∗′(𝑠)⟩ = 0. 
Hence 𝛽∗(𝑠) is a null currve and it completes the proof.  

 

Theorem 4. Let 𝛼(𝑠) be a null curve in Minkowski 3-spaces parametrized by the pseudo arc-

length 𝑠. Then the involute 𝛼∗(𝑠) of 𝛼(𝑠) is a null curve/ 

Proof. Differentiating the equation (4) and using equation (2) imply 

𝛼∗′(𝑠) = (𝑐 − 𝑠)𝑁(𝑠). 
Consequently, 

⟨𝛼∗′(𝑠), 𝛼∗′(𝑠)⟩ = (𝑐 − 𝑠)⟨𝑁(𝑠), 𝑁(𝑠)⟩ = 0. 
Hence 𝛼∗(𝑠) is a null currve and it completes the proof.  

 

2. Evolutes of Pseudo-Null and Null Curves in Minkowski 3-Space 

 

Definition 2. Let 𝑟(𝑠) be involute of the curve 𝑟∗(𝑠) parametrized by arc-length or pseudo arc-

length 𝑠. Therefore, the tangent line of 𝑟∗(𝑠) intersect 𝑟(𝑠) orthogonally. If 𝑥∗ is the point of 

contact on the evolute to the tangent line which intersects 𝛽 at 𝑥(𝑠), then 𝑥∗ − 𝑥 can be 

represented as a linear combination of normal vector 𝑁(𝑠) and binormal vector 𝐵(𝑠). 

Therefore, it can be written as 

𝑥∗(𝑠) = 𝑥(𝑠) = 𝑘1(𝑠)𝑁(𝑠) + 𝑘2(𝑠)𝐵(𝑠). (6) 

Next, we will find the function 𝑘1(𝑠) and 𝑘2(𝑠) by considering the causal characteristics pf the 

curves.  

 

Theorem 5. Let 𝛽∗(𝑠) be the evolute of th epseudonull curve 𝛽(𝑠) parametrized by arc-length 

𝑠 and curvature 𝜅(𝑠) = 1. Then  

 

𝛽∗(𝑠) = 𝛽(𝑠) + 𝑒−2𝜓(𝑠)+𝑐𝑁(𝑠) + 𝐵(𝑠) (7) 

 

where −𝜓(𝑠) +
1

2
𝑐 = ∫ 𝜏(𝑠) 𝑑𝑠. 

Proof. Differentiating equation (6) yields 

𝛽∗′(𝑠) = 𝛽′(𝑠) + 𝑘2
′ (𝑠)𝑁(𝑠) + 𝑘1(𝑠)(𝜏(𝑠)𝑁(𝑠)) + 𝑘2

′ (𝑠)𝐵(𝑠)  

+𝑘2(𝑠)(−𝜅(𝑠)𝑇(𝑠) − 𝜏(𝑠)𝐵(𝑠))  

= (1 − 𝑘2(𝑠))𝑇(𝑠) + (𝑘1
′ (𝑠) + 𝑘1(𝑠)𝜏(𝑠))𝑁(𝑠) + (𝑘2

′ (𝑠) − 𝑘2(𝑠)𝜏(𝑠))𝐵(𝑠). 

As a consequence, 

⟨𝛽∗′(𝑠), 𝑇(𝑠)〉 = (1 − 𝑘2(𝑠))⟨𝑇(𝑠), 𝑇(𝑠)⟩ + (𝑘1
′ (𝑠) + 𝑘1(𝑠)𝜏(𝑠))⟨𝑁(𝑠), 𝑇(𝑠)⟩  

+(𝑘2
′ (𝑠) − 𝑘2(𝑠)𝜏(𝑠))⟨𝐵(𝑠), 𝑇(𝑠)⟩.  

Since ⟨𝑇∗(𝑠), 𝑇∗(𝑠)⟩ = 0, then we have 0 = 1 − 𝑘2(𝑠), and hence 𝑘2(𝑠) = 1. Therefore, it 

implies 

𝛽∗′(𝑠) = (𝑘1
′ (𝑠) + 𝑘1(𝑠)𝜏(𝑠))𝑁(𝑠) − 𝜏(𝑠)𝐵(𝑠).  (8) 

On the other hand, 𝛽∗′(𝑠) is proportional to 𝛽∗(𝑠) − 𝛽(𝑠) = 𝑘1(𝑠)𝑁(𝑠) + 𝑘2(𝑠)𝐵(𝑠). As a 

consequence, 
𝑘1

′ (𝑠) + 𝑘1(𝑠)𝜏(𝑠)

𝑘1(𝑠)
= −𝜏(𝑠) 

which gives us  

−2𝜏(𝑠)𝑘1(𝑠) = 𝑘1
′ (𝑠). (9)  

Solving this differential equation yields  

𝑘1(𝑠) = 𝑒∫ −𝜏(𝑠)𝑑𝑠 = 𝑒−2𝜓(𝑆)+𝑐 

for some contant 𝑐. Therefore, substituting 𝑘1(𝑠) and 𝑘2(𝑠) into equation (6) yields equation 

(7) and it completes the proof. 
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Theorem 6. Let 𝛽: 𝐼 → 𝐸1
3 be a pseudonull curve parametrized by ars-length (𝑠) and 𝛽∗: 𝐼 →

𝐸1
3 be its evolute. Thenm the distance between 𝛽(𝑠) and 𝛽∗(𝑠) is √2𝑒−2𝜓(𝑆)+𝑐. 

Proof. From equation (7), we have 

𝛽∗(𝑠) − 𝛽(𝑠) = 𝑒−2𝜓(𝑠)+𝑐𝑁(𝑠) + 𝐵(𝑠). 
It follows that  

‖𝛽∗(𝑠) − 𝛽(𝑠)‖2 = ⟨𝑒−2𝜓(𝑠)+𝑐𝑁(𝑠) + 𝐵(𝑠), 𝑒−2𝜓(𝑠)+𝑐𝑁(𝑠) + 𝐵(𝑠)⟩  

 = 2𝑒−2𝜓(𝑠)+𝑐⟨𝑁(𝑠), 𝐵(𝑠)⟩  

 = 2𝑒−2𝜓(𝑠)+𝑐. 

 

Therefore,  

‖𝛽∗(𝑠) − 𝛽(𝑠)‖ = √2𝑒−2𝜓(𝑆)+𝑐 

as desired. 

 

Theorem 8. Let 𝛽(𝑠) be a pseudonull curve parametrized by arc-length 𝑠 with curvature 𝜅(𝑠) =
1 and torsion 𝜏(𝑠) ≠ 0. Then, the evolute of 𝛽(𝑠) is a spacelike curve. 

Proof. From equations (8) and (9), we have 

𝛽∗′(𝑠) = −𝑘1(𝑠)𝜏(𝑠)𝑁(𝑠) − 𝜏(𝑠)𝐵(𝑠). 
Therefore, 

⟨𝛽∗′(𝑠), 𝛽∗′(𝑠)⟩ = ⟨−𝑘1(𝑠)𝜏(𝑠)𝑁(𝑠) − 𝜏(𝑠)𝐵(𝑠), −𝑘1(𝑠)𝜏(𝑠)𝑁(𝑠) − 𝜏(𝑠)𝐵(𝑠)⟩  
= 𝑘1(𝑠)𝜏2(𝑠)  

= 𝑒−2𝜓(𝑆)+𝑐𝜏2(𝑠) > 0  

Since 𝑁(𝑠) and 𝐵(𝑠) aren ull vectors. Therefore 𝛽∗(𝑠) is a spacelike curve and completes the 

proof. 

 

Theorem 9.  Let 𝛼∗(𝑠) be the evolute of a null curve 𝛼(𝑠) parametrized by pseudo-arc length 

𝑠. Then  

𝛼∗(𝑠) = 𝛼(𝑠) −
1

𝜏(𝑠)
𝑁(𝑠) − (𝜓(𝑠) + 𝑐)𝐵(𝑠) (10) 

where 𝜓(𝑠) + 𝑐 = ∫
1

𝜏(𝑠)
𝑑𝑠. 

Proof. If we take the derivative of equation (10), we have 

 

𝛼∗′(𝑠) = 𝛼′(𝑠) + 𝑘1
′ (𝑠)𝑁(𝑠) + 𝑘1(𝑠)𝑁(𝑠) + 𝑘2

′ (𝑠)𝐵(𝑠) + 𝑘2(𝑠)𝐵′(𝑠)  

= 𝑇(𝑠) + 𝑘1
′ (𝑠)𝑁(𝑠) + 𝑘1(𝑠)(𝜏(𝑠)𝑇(𝑠) − 𝐵(𝑠)) + 𝑘2

′ (𝑠)𝐵(𝑠) − 𝑘2(𝑠)𝜏(𝑠)𝑁(𝑠)  

= (1 + 𝑘1(𝑠)𝜏(𝑠))𝑇(𝑠) + (𝑘1
′ (𝑠) − 𝑘1(𝑠))𝑁(𝑠) + (𝑘2

′ (𝑠) − 𝑘1(𝑠))𝐵(𝑠). 

 

Since 𝛼∗′(𝑠) is tangent to 𝛼∗(𝑠), it is proportional to 𝛼∗(𝑠) − 𝛼(𝑠) = 𝑘1(𝑠)𝑁(𝑠) + 𝑘2(𝑠)𝐵(𝑠). 

Therefore, we get  

1 + 𝑘1(𝑠)𝜏(𝑠) = 0 ⟹ 𝑘1(𝑠) = −
1

𝜏(𝑠)
. 

On the other hand, ⟨𝑇∗(𝑠), 𝑇(𝑠)⟩ = 0. Consequently, 

0 = ⟨𝛼∗′(𝑠), 𝑇(𝑠)⟩  
 = (1 + 𝑘1(𝑠)𝜏(𝑠))⟨𝑇(𝑠), 𝑇(𝑠)⟩ + (𝑘1

′ (𝑠) − 𝑘2(𝑠))⟨𝑁(𝑠), 𝑇(𝑠)⟩   

+(𝑘2
′ (𝑠) − 𝑘1(𝑠))⟨𝐵(𝑠), 𝑇(𝑠)⟩  

 = 𝑘2
′ (𝑠) − 𝑘1(𝑠).  

This gives us 
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𝑘2
′ (𝑠) = 𝑘1(𝑠) = −

1

𝜏(𝑠)
. 

Integrating the last equation above, we have 

𝑘2(𝑠) = ∫ −
1

𝜏(𝑠)
𝑑(𝑠) = −(𝜓(𝑠) + 𝑐) 

for some constant 𝑐. Substituting 𝑘1(𝑠) and 𝑘2(𝑠) into equation (6) gives us equation (10) as 

desired. 

 

Theorem 10. Let 𝛼∗(𝑠) be the evolute of a null curve 𝛼(𝑠) parametrized by pseudo-arc length 

𝑠. Then the distance between 𝛼∗(𝑠) and 𝛼(𝑠) is 
1

‖𝜏(𝑠)‖
. 

Proof. From equation (10), we have 

𝛼∗(𝑠) − 𝛼(𝑠) = −
1

𝜏(𝑠)
𝑁(𝑠) − (𝜓(𝑠) + 𝑐)𝐵(𝑠). 

It follows that  

‖𝛼∗(𝑠) − 𝛼(𝑠)‖𝟐 = ⟨−
1

𝜏(𝑠)
𝑁(𝑠) − (𝜓(𝑠) + 𝑐)𝐵(𝑠), −

1

𝜏(𝑠)
𝑁(𝑠) − (𝜓(𝑠) + 𝑐)𝐵(𝑠)⟩  

 =
1

𝜏2(𝑠)
. 

Therefore,  

‖𝛼∗(𝑠) − 𝛼(𝑠)‖ =
1

‖𝜏(𝑠)‖
 

and it completes the proof. 

 

Theorem 11. Let 𝛼∗(𝑠) be the evolute of a null curve 𝛼(𝑠) parametrized by pseudo-arc length 

𝑠. Then 𝛼∗(𝑠) is a spacelike curve. 

Proof. Differentiating equation (10) yields 

𝛼∗′(𝑠) = (
𝜏′(𝑠)

𝜏2(𝑠)
+ 𝜓(𝑠) + 𝑐) 𝑁(𝑠). 

As a consequence, 

⟨𝛼∗′(𝑠), 𝛼∗′(𝑠)⟩ = ⟨(
𝜏′(𝑠)

𝜏2(𝑠)
+ 𝜓(𝑠) + 𝑐) 𝑁(𝑠), (

𝜏′(𝑠)

𝜏2(𝑠)
+ 𝜓(𝑠) + 𝑐) 𝑁(𝑠)⟩  

= (
𝜏′(𝑠)

𝜏2(𝑠)
+ 𝜓(𝑠) + 𝑐)

2

> 0.   

Therefore 𝛼∗(𝑠) is a spacelike as desired. 
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