UJI INVIGORASI EKSTRAK BAWANG MERAH TERHADAP VIABILITAS BENIH KEDELAI (*Glycine max* L.)

Invigoration Test of Shallot Extract on the Viability of Soybean (Glycine max L.) Seeds
Tuti Handayani Arifin^{1*}, Sri Soenarsih DAS², dan Shubzan Andi Mahmud³

1,2,3)Program Studi Agroteknologi, Fakultas Pertanian, Universitas Khairun Jalan Pertamina Kampus II Unkhair Gambesi, Kecamatan Ternate Selatan, Kota Ternate, Maluku Utara, Indonesia 1*)tuti.handayani@unkhair.ac.id

ABSTRAK

Viabilitas benih kedelai (*Glycine max* L.) cenderung menurun selama penyimpanan, sehingga diperlukan teknik invigorasi untuk memperbaikinya. Penelitian ini bertujuan mengkaji pengaruh ekstrak bawang merah (*Allium cepa* L.) terhadap viabilitas dan vigor benih kedelai. Penelitian menggunakan Rancangan Acak Lengkap Faktorial dengan konsentrasi ekstrak (0%, 20%, 40%, 60%, 80%, and 100% %) dan lama perendaman (3, 6, dan 9 jam) dengan tiga ulangan. Hasil menunjukkan bahwa konsentrasi 80% dengan perendaman 9 jam memberikan hasil terbaik, ditandai dengan potensi tumbuh sebesar 80,89%, daya kecambah 29,78% dan 19,28%, vigor 62,67%, kecepatan 15,87% dan 22,72% serta keserampakan tumbuh yang lebih tinggi sebesar 17,33%, serta penurunan kecambah abnormal sebesar 17,33% dan benih mati sebesar 22,87%.

Kata kunci: Invigorasi, bawang merah, viabilitas, vigor, kedelai

Perbal: Jurnal Pertanian Berkelanjutan

ABSTRACT

The viability of soybean seeds (Glycine max L.) tends to decline during storage, thus requiring invigorating techniques to restore their quality. This study aimed to evaluate the effect of shallot (Allium cepa L.) extract on the viability and vigor of soybean seeds. A Factorial Completely Randomized Design was applied with extract concentrations (0%, 20%, 40%, 60%, 80%, and 100% and soaking durations (3, 6, and 9 hours), each replicated three times. The results showed that a concentration of 80% combined with 9 hours of soaking produced the best outcomes, characterized by germination potential of 80.89%, germination percentages of 29.78% and 19.28%, vigor of 62.67%, growth speed of 15.87% and 22.72%, and higher uniformity of 17.33%, along with reduced abnormal seedlings (17.33%) and dead seeds (22.87%).

Keywords: Invigoration, shallot extract, seed viability, vigor, soybean

PENDAHULUAN

Kedelai (*Glycine max* L.) merupakan salah satu komoditas pangan strategis di Indonesia yang memiliki nilai ekonomi sekaligus gizi tinggi. Kandungan protein sekitar 40%, minyak ±20%, serta vitamin B menjadikan kedelai sebagai bahan baku utama berbagai produk pangan, seperti tahu, tempe, margarin, dan kecap. Seiring meningkatnya jumlah penduduk, kebutuhan kedelai pun terus bertambah sehingga diperlukan upaya peningkatan produktivitas dan mutu benih. Mutu benih yang optimal tidak hanya ditentukan oleh mutu genetik,

tetapi juga mutu fisik dan fisiologis yang memengaruhi kemampuan benih untuk tumbuh secara maksimal (Adie & Krisnawati, 2018; Nugrahaeni, 2016).

Benih kedelai termasuk kategori benih ortodoks yang dapat disimpan dalam kondisi kering tanpa mengalami penurunan viabilitas secara signifikan. Namun, mutu fisiologisnya dapat menurun akibat penanganan pascapanen yang kurang tepat. Salah satu upaya untuk memperbaiki mutu fisiologis tersebut adalah melalui teknik invigorasi, yaitu perlakuan pratanam yang bertujuan meningkatkan indeks vigor benih.

Metode invigorasi dapat dilakukan melalui berbagai pendekatan, seperti osmoconditioning, hydropriming, vitamin priming, serta penggunaan zat pengatur tumbuh (ZPT) alami (Purnawati, et al., 2014; Farooq, et al., 2019).

Bawang merah (Allium cepa L.) diketahui mengandung hormon auksin dan giberelin yang berperan penting dalam merangsang pertumbuhan akar dan batang tanaman. Aplikasi ekstrak bawang merah sebagai ZPT telah dilaporkan mampu meningkatkan daya kecambah berbagai tanaman, seperti kakao, tomat, dan melati, pada konsentrasi serta durasi perendaman tertentu (Lubis, et al., 2018; Marfirani & Melisa, 2014). Selain itu, ekstrak bawang merah dapat mempercepat proses perkecambahan melalui stimulasi enzim hidrolitik yang berfungsi memobilisasi cadangan makanan di dalam biji (Upreti & Sharma, 2016; Kurniati, et al., 2017).

Penelitian ini bertujuan mengevaluasi pengaruh variasi konsentrasi ekstrak bawang merah dan lama perendaman terhadap viabilitas benih kedelai. Diharapkan, hasil penelitian ini mampu merekomendasikan kombinasi konsentrasi dan durasi perendaman yang paling efektif dalam meningkatkan mutu fisiologis benih. Selain itu, penelitian ini berpotensi menjadi acuan pemanfaatan sumber daya hayati lokal sebagai bahan ZPT alami, sekaligus

mendukung praktik pertanian berkelanjutan yang mengurangi ketergantungan pada input sintetis (Sharma, *et al.*, 2020 ; Upreti & Sharma, 2016).

METODOLOGI PENELITIAN

Tempat dan Waktu

Penelitian ini dilaksanakan di Laboratorium Agroteknologi, Fakultas Pertanian, Universitas Khairun, Ternate pada bulan Maret - April 2025.

Alat dan Bahan

Benih kedelai varietas Anjasmoro digunakan sebagai bahan uji, sedangkan bawang merah (Allium cepa L.) segar dijadikan sumber ekstrak. Media tanam yang digunakan berupa campuran pasir dan tanah top soil dengan perbandingan 1:1. Pembuatan ekstrak bawang merah dilakukan dengan menimbang umbi bawang merah segar sebanyak 1.000 gram, kemudian diblender dan diperas untuk larutan biang. mendapatkan Larutan ekstrak selanjutnya diencerkan dengan aquades hingga mencapai konsentrasi yang diinginkan, yaitu 0%, 20%, 40%, 60%, 80%, dan 100%.

Rancangan Penelitian

Rancangan percobaan yang digunakan adalah Rancangan Acak Lengkap (RAL) faktorial dengan dua faktor. Faktor pertama adalah konsentrasi ekstrak bawang merah yang terdiri dari enam taraf (B0 = 0%, B1 = 20%, B2 = 40%, B3 = 60%, B4 = 80%, dan B5 =

100%). Faktor kedua adalah lama perendaman benih yang terdiri dari tiga taraf (P1 = 3 jam, P2 = 6 jam, dan P3 = 9 jam). Setiap kombinasi perlakuan diulang sebanyak tiga kali, sehingga diperoleh 54 unit percobaan, masing-masing berisi 50 butir benih kedelai.

Tahapan Penelitian

Prosedur penelitian diawali dengan perendaman benih kedelai dalam larutan ekstrak bawang merah sesuai perlakuan konsentrasi dan lama perendaman. Setelah proses perendaman selesai, benih dikeringanginkan dan ditanam dalam bak perkecambahan berukuran 37,5 × 29,5 cm yang telah diisi media pasir dan tanah top soil. Perkecambahan dilakukan pada suhu ruang, dan benih disiram secukupnya untuk menjaga kelembapan media.

Parameter yang diamati meliputi potensi tumbuh, daya kecambah, vigor kecambah, kecepatan tumbuh, keserempakan tumbuh, persentase kecambah abnormal, dan persentase benih mati. Penilaian viabilitas dilakukan berdasarkan pedoman International Seed

Testing Association (ISTA, 2006), sedangkan perhitungan vigor menggunakan metode (Copeland & McDonald, 1995).

Analisis Data

Data penelitian kemudian dianalisis menggunakan *Analysis of Variance* (ANOVA), jika terdapat pengaruh nyata dan sangat nyata pada setiap perlakuan maka dilanjutkan dengan Uji Beda Nyata (BNT) 0,05.

HASIL DAN PEMBAHASAN Potensi Tumbuh

Hasil analisis ragam potensi tumbuh benih kedelai menunjukkan hahwa konsentrasi ekstrak bawang merah berpengaruh nyata terhadap potensi tumbuh benih kedelai, sedangkan lama perendaman tidak berpengaruh signifikan. Konsentrasi 80% menghasilkan potensi tumbuh yaitu 80,89% tertinggi, dibandingkan kontrol sebesar 69,78%. Rata-rata pengaruh ekstrak bawang merah terhadap potensi tumbuh benih kedelai adalah sebagai berikut:

Tabel 1. Pengaruh ekstrak bawang merah terhadap potensi tumbuh benih kedelai

Perlakuan	Rata-Rata	
B0 = 0% Tanpa Ekstrak bawang merah	69.78 a	
B1 = 20% Ekstrak bawang merah	72.22 ab	
B2 = 40% Ekstrak bawang merah	70.22 a	
B3 = 60 % Ekstrak bawang merah	68.89 a	
B4 = 80% Ekstrak bawang merah	80.89 b	
B5 = 100% Ekstrak bawang merah	76.00 ab	
BNT 0,05	9.23	

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

1 Tabel menuniukkan bahwa rata-rata perlakuan **B4** memberikan tertinggi (80,89%), yang mengindikasikan bahwa konsentrasi tersebut efektif dalam merangsang peningkatan kadar auksin di sel. benih kedelai dalam sehingga mendukung proses perkecambahan secara optimal.

Peningkatan ini diduga akibat kandungan auksin (IAA) dan giberelin dalam ekstrak bawang merah yang mempercepat metabolisme awal benih, merangsang pemanjangan akar. memicu pemecahan cadangan makanan pada kotiledon (Taiz, et al., 2018). Temuan ini sejalan dengan penelitian Lubis, et al., (2018) pada benih tomat dan Farida, et al., (2020) pada benih kopi, yang melaporkan melalui peningkatan potensi tumbuh penggunaan ZPT alami.

Menurunnya potensi tumbuh pada konsentrasi 100% dibandingkan dengan 80% diduga disebabkan oleh tingginya kandungan auksin yang masuk ke jaringan benih, bersamaan dengan penyerapan air yang berlebihan. Kondisi ini berpotensi memicu pembentukan senyawa toksik yang menghambat metabolisme sel.

Secara fisiologis, potensi tumbuh mencerminkan mutu benih pada kondisi optimal (ISTA, 2020). Konsentrasi menjadi faktor kunci, karena dosis rendah kurang efektif, sedangkan dosis berlebih dapat mengganggu keseimbangan hormon (Yusuf, *et al.*, 2021). Dengan demikian, konsentrasi 80% ekstrak bawang merah direkomendasikan sebagai dosis optimal, meskipun faktor varietas, lama perendaman, dan media tetap perlu diperhatikan untuk hasil konsisten.

Daya Perkecambahan

Analisis ragam menunjukkan bahwa perlakuan konsentrasi ekstrak bawang merah dan lama perendaman masingmasing berpengaruh nyata terhadap daya kecambah benih kedelai, namun tidak terdapat interaksi signifikan antara kedua faktor tersebut. Berdasarkan Tabel 2, perlakuan terbaik dicapai pada konsentrasi 80% ekstrak bawang merah dengan ratarata daya kecambah sebesar 29,78%, sedangkan lama perendaman optimal adalah 9 jam dengan rata-rata 19,28% sebagaimana tercantum pada Tabel 3.

Peningkatan daya kecambah pada perlakuan 80% ekstrak bawang merah dan lama perendaman 9 jam diduga berkaitan dengan peran fitohormon alami dalam ekstrak bawang merah, khususnya auksin dan giberelin, yang mampu mempercepat pembelahan serta pemanjangan sel pada fase awal perkecambahan. Giberelin diketahui merangsang sintesis enzim hidrolitik, seperti α-amilase, yang berfungsi menghidrolisis pati menjadi gula sederhana, sehingga menyediakan sumber energi bagi pertumbuhan embrio (Bewley, et al., 2013). Hal ini mengindikasikan

Tabel 2. Pengaruh ekstrak bawang merah terhadap daya kecambah benih kedelai

Perlakuan	Rata-Rata	
B0 = 0% Tanpa Ekstrak bawang merah	11.56 ab	
B1 = 20% Ekstrak bawang merah	21.22 e	
B2 = 40% Ekstrak bawang merah	14.44 bcd	
B3 = 60% Ekstrak bawang merah	12.22 abc	
B4 = 80% Ekstrak bawang merah	29.78 e	
B5 = 100% Ekstrak bawang merah	11.11 a	
BNT 0.05	4.66	

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Tabel 3. Pengaruh lama perendaman terhadap daya kecambah benih kedelai

Perlakuan	Rata-Rata
P1 = Perendaman 3 jam	14.44 a
P2 = Perendaman 6 jam	16.44 ab
P3 = Perendaman 9 jam	19.28 b
BNT 0.05	3.29

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

bahwa kombinasi konsentrasi hormon yang tepat dengan durasi perendaman yang optimal dapat memaksimalkan aktivitas metabolik benih pada tahap awal perkecambahan. Efek sinergis antara auksin dan giberelin tidak hanya merangsang pemanjangan sel, tetapi juga mempercepat mobilisasi cadangan makanan. pada akhirnya yang mempercepat munculnya radikula dan plumula.

Hasil penelitian ini sejalan dengan temuan Marfirani, et al., (2014) yang melaporkan bahwa pemberian bawang merah dengan konsentrasi 80-100% meningkatkan persentase kecambah normal pada stek tanaman melati. Selaras Yusuf. al., dengan itu, et (2021)menunjukkan bahwa aplikasi giberelin alami yang berasal dari ekstrak umbi mampu mempercepat pembentukan akar dan daun, sehingga memberikan pengaruh positif terhadap daya kecambah.

Durasi perendaman 9 jam dinilai optimal karena memberikan waktu yang cukup untuk penetrasi hormon ke dalam lapisan testa benih tanpa menimbulkan kerusakan jaringan akibat imbibisi berlebihan. Hal ini sejalan dengan hasil penelitian Lubis, et al., (2018) pada benih menunjukkan tomat, yang bahwa perendaman lebih dari 12 jam justru menurunkan viabilitas akibat terjadinya hipoksia pada jaringan benih.

Vigor Kecambah

Analisis ragam menunjukkan adanya interaksi signifikan antara konsentrasi ekstrak bawang merah dan lama perendaman terhadap vigor kecambah kedelai. Kombinasi perlakuan 80% ekstrak bawang merah dengan perendaman selama 6 jam menghasilkan vigor tertinggi sebesar

62,67%. Hal ini mengindikasikan bahwa efektivitas fitohormon alami dipengaruhi oleh keseimbangan antara dosis dan lama kontak larutan hormon dengan benih. Konsentrasi 80% dinilai optimal untuk merangsang aktivitas enzim, meningkatkan laju respirasi, dan mempercepat pembelahan sel sejak fase imbibisi, tanpa menimbulkan stres fisiologis akibat imbibisi berlebihan. Rincian hasil tersebut disajikan pada Tabel 4 dan Tabel 5.

Vigor kecambah merupakan indikator penting dalam penilaian mutu fisiologis benih karena mencerminkan kekuatan dan kecepatan pertumbuhan pada kondisi optimal (Hampton & TeKrony, 2013). Peningkatan vigor pada perlakuan B4P2 menunjukkan bahwa dosis hormon pada konsentrasi 80% efektif memicu aktivitas enzim, meningkatkan laju respirasi, dan mempercepat pembelahan sel sejak fase awal perkecambahan. Aktivasi enzim hidrolitik, percepatan metabolisme, dan

Tabel 4. Pengaruh interaksi terhadap vigor kecambah benih kedelai

Tabel 1: 1 engaran interaksi ternadap vigor kecamban bem	ii Redeldi
Perlakuan	Rata-rata
B0P1 = 0% Ekstrak BM dengan perendaman 3 jam	22.67 a
B0P2 = 0% Ekstrak BM dengan perendaman 6 jam	37.33 abcd
B0P3 = 0% Ekstrak BM dengan perendaman 9 jam	56.00 e
B1P1 = 20% Ekstrak BM dengan perendaman 3 jam	45.33 cde
B1P2 = 20% Ekstrak BM dengan perendaman 6 jam	54.67 e
B1P3 = 20% Ekstrak BM dengan perendaman 9 jam	50.00 de
B2P1 = 40% Ekstrak BM dengan perendaman 3 jam	50.67 de
B2P2 = 40% Ekstrak BM dengan perendaman 6 jam	40.00 bcde
B2P3= 40% Ekstrak BM dengan perendaman 9 jam	45.33 cde
B3P1 = 60% Ekstrak BM dengan perendaman 3 jam	49.33 de
B3P2 = 60% Ekstrak BM dengan perendaman 6 jam	28.67 ab
B3P3 = 60% Ekstrak BM dengan perendaman 9 jam	38.67 abcde
B4P1 = 80% Ekstrak BM dengan perendaman 3 jam	62.00 e
B4P2 = 80% Ekstrak BM dengan perendaman 6 jam	62.67 e
B4P3 = 80% Ekstrak BM dengan perendaman 9 jam	62.00 e
B5P1 = 100% Ekstrak BM dengan perendaman 3 jam	32.00 abc
B5P2 = 100% Ekstrak BM dengan perendaman 6 jam	49.33 de
B5P3 = 100% Ekstrak BM dengan perendaman 9 jam	42.00 bcde
BNT 0.05	15.55

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Tabel 5. Pengaruh ekstrak bawang merah terhadap vigor kecambah benih kedelai

Perlakuan	Rata-rata
B0 = 0% Tanpa ekstrak bawang merah	38.67 a
B1 = 20% Ekstrak bawang merah	50.00 de
B2 = 40% Ekstrak bawang merah	45.33 cd
B3 = 60% Ekstrak bawang merah	38.89 ab
B4 = 80% Ekstrak bawang merah	62.22 de
B5 = 100% Ekstrak bawang merah	41.11 abc
BNT 0.05	8.98

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

pembelahan sel yang lebih intensif memperkuat kemampuan kecambah untuk tumbuh cepat dan seragam. Kondisi ini tidak hanya meningkatkan mutu fisiologis benih, tetapi juga berpotensi meningkatkan performa tanaman di lapangan karena benih dengan vigor tinggi lebih adaptif terhadap fluktuasi lingkungan awal pertumbuhan.

Peran fitohormon dalam ekstrak bawang merah sangat penting dalam mekanisme ini. Auksin memacu sel, pemanjangan sementara giberelin merangsang sintesis enzim hidrolitik yang memecah cadangan makanan menjadi sumber energi siap pakai (Taiz, et al., 2018). Sinergi keduanya mempercepat pembentukan radikula dan plumula, sehingga kecambah tumbuh lebih cepat dan seragam. Durasi perendaman selama 6 jam kemungkinan menjadi titik optimal karena cukup untuk memungkinkan penetrasi zat pengatur tumbuh (ZPT) ke dalam jaringan embrio, sekaligus mencegah terjadinya hipoksia atau kerusakan membran sel akibat kelebihan air.

Temuan ini sejalan dengan hasil penelitian Upreti dan Sharma (2016) yang menyatakan bahwa pemberian giberelin alami dari sumber organik dapat meningkatkan vigor dan kemampuan adaptasi awal kecambah pada berbagai tanaman hortikultura. Hasil serupa juga ditemukan oleh Putri, et al., (2020) pada benih kacang hijau, di mana vigor tertinggi

diperoleh pada konsentrasi hormon sedang, bukan pada dosis yang terlalu rendah atau terlalu tinggi.

Kecepatan dan Keserampakan Tumbuh

Analisis ragam menunjukkan bahwa perlakuan ekstrak bawang merah dan lama perendaman berpengaruh nyata terhadap kecepatan tumbuh dan keserampakan tumbuh benih kedelai, meskipun keduanya tidak menunjukkan interaksi signifikan. Pada faktor konsentrasi, perlakuan terbaik diperoleh pada 80% ekstrak bawang merah dengan rata-rata kecepatan tumbuh 3,54% dan keserampakan tumbuh 14,87% (Tabel 6 dan Tabel 8). Sementara itu, pada faktor lama perendaman, hasil terbaik dicapai pada 9 jam perendaman dengan rata-rata dan kecepatan tumbuh 2,65% keserampakan tumbuh 22,72% (Tabel 7 dan Tabel 9). Temuan ini menegaskan bahwa baik konsentrasi ekstrak maupun lama perendaman memiliki peran penting dalam meningkatkan mutu fisiologis benih.

Tabel 6 memperlihatkan bahwa perlakuan dengan konsentrasi 80% ekstrak bawang merah menghasilkan kecepatan tumbuh yang lebih tinggi dibandingkan perlakuan lainnya. Hal ini menunjukkan bahwa kandungan fitohormon alami dalam bawang merah, khususnya auksin dan giberelin, mampu mempercepat proses metabolisme awal benih. Giberelin berperan penting dalam menginduksi ekspresi gen yang menghasilkan enzim

Perbal: Jurnal Pertanian Berkelanjutan

Fakultas Pertanian Universitas Cokroaminoto Palopo

Tabel 6. Pengaruh ekstrak bawang merah terhadap kecepatan tumbuh benih kedelai

Perlakuan	Rata-rata
B0 = 0% Ekstrak bawang merah	2.78 abc
B1 = 20% Ekstrak bawang merah	2.84 de
B2 = 40% Ekstrak bawang merah	2.46 abcd
B3 = 60% Ekstrak bawang merah	2.11 ab
B4 = 80% Ekstrak bawang merah	3.54 e
B5 = 100% Ekstrak bawang merah	1.99 a
BNT 0.05	0.59

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Tabel 7. Pengaruh lama perendaman terhadap kecepatan tumbuh benih kedelai

Perlakuan	Rata-rata
P1 = Perendaman 3 jam	2.06 a
P2 = Perendaman 6 jam	2.34 ab
P3 = Perendaman 9 jam	2.65 c
BNT 0.05	0.42

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Tabel 8. Pengaruh ekstrak bawang merah terhadap keserampakan tumbuh benih kedelai

Perlakuan	Rata-rata
B0 = 0% Tanpa ekstrak bawang merah	7.00 a
B1 = 20 % Ekstrak bawang merah	14.44 e
B2 = 40 % Ekstrak bawang merah	8.00 abcd
B3 = 60 % Ekstrak bawang merah	7.00 abcd
B4 = 80 % Ekstrak bawang merah	14.87 e
B5 = 100 % Ekstrak bawang merah	7.44 abc
BNT 0.05	4.22

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Tabel 9. Pengaruh lama perendaman terhadap keserampakan tumbuh benih kedelai

Perlakuan	Rata-rata	
P1 = Perendaman 3 jam	11.22 a	
P2 = Perendaman 6 jam	14.00 ab	
P3 = Perendaman 9 jam	22.72 c	
BNT 0.05	4.22	

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

α-amilase, sehingga cadangan pati dalam endosperma diuraikan menjadi gula sederhana sebagai sumber energi respirasi (Bewley, et al., 2013). Sementara itu, auksin berfungsi merangsang pemanjangan sel pada akar primer, sehingga meningkatkan kemampuan benih dalam menyerap air dan nutrisi. Kombinasi kedua hormon tersebut

memberikan sinergi positif yang mendorong pertumbuhan awal lebih cepat dan vigor kecambah yang lebih kuat.

Sementara itu, Tabel 8 dan Tabel 9 menunjukkan bahwa perlakuan 80% ekstrak bawang merah dengan lama perendaman 9 jam menghasilkan tingkat keserampakan tumbuh yang lebih tinggi dibandingkan perlakuan lain. Tingginya keserampakan tumbuh mencerminkan kemampuan benih untuk berkecambah secara serempak dalam jangka waktu tertentu, yang sangat berhubungan dengan keseragaman pertumbuhan tanaman di lapangan (Hampton & TeKrony, 2013). Mekanisme ini dapat dijelaskan melalui giberelin yang merangsang peran enzim hidrolitik pembentukan untuk menguraikan cadangan makanan, serta peran auksin dalam mengatur diferensiasi jaringan (Taiz, et al., 2018). Dengan demikian. proses perkecambahan berlangsung lebih cepat, seragam, dan efisien. Temuan ini konsisten dengan penelitian Farida, et al., (2020) pada benih kopi dan Benard, et al., (2021) pada benih jagung manis, yang menunjukkan bahwa perlakuan menggunakan zat pengatur tumbuh alami atau larutan yang mengandung fitohormon mampu meningkatkan keseragaman perkecambahan.

Kecambah Abnormal dan Benih Mati

Analisis ragam pada Tabel 10 menunjukkan bahwa terdapat interaksi antara konsentrasi ekstrak bawang merah dan lama perendaman terhadap persentase kecambah abnormal. Kombinasi perlakuan 80% ekstrak bawang merah dengan perendaman selama 3 jam mampu menekan jumlah kecambah abnormal hingga 17,33%,

sehingga menjadi perlakuan paling efektif. Namun, pada kombinasi yang sama dengan lama perendaman 9 jam, persentase kecambah abnormal justru meningkat 37,34%. mencapai Fenomena ini mengindikasikan bahwa konsentrasi hormon yang terlalu tinggi atau durasi perendaman yang terlalu lama dapat mengganggu keseimbangan fisiologis benih, sehingga memicu pembentukan kecambah abnormal.

Kecambah abnormal ditandai dengan kelainan morfologi seperti akar yang tidak berkembang, pucuk rusak, atau kotiledon cacat. mencerminkan yang adanya gangguan metabolisme awal (ISTA, 2020). Pada perlakuan 80% Ekstrak BM dengan perendaman 3 jam, dosis hormon yang optimal serta waktu imbibisi yang tidak berlebihan mendukung perkembangan organ kecambah secara normal. Sebaliknya, meningkatnya jumlah kecambah abnormal pada perlakuan 80% Ekstrak bawang merah dengan perendaman 9 jam dapat disebabkan oleh imbibisi berlebih yang mengurangi ketersediaan oksigen, memicu hipoksia, dan menghambat perkembangan embrio (Nonogaki, et al., 2018). Temuan ini diperkuat oleh Lubis, et al., (2018) dan Putri, et al., (2020) yang melaporkan bahwa penggunaan ZPT dengan konsentrasi tinggi dan durasi lama dapat meningkatkan kecambah abnormal.

Tabel 10. Pengaruh interaksi terhadap kecambah abnormal benih kedelai

Perlakuan	Rata-rata
B0P1 = 0% Ekstrak BM dengan perendaman 3 jam	37.33 e
B0P2 = 0% Ekstrak BM dengan perendaman 6 jam	30.66 e
B0P3 = 0% Ekstrak BM dengan perendaman 9 jam	25.33 e
B1P1 = 20% Ekstrak BM dengan perendaman 3 jam	18.67 abc
B1P2 = 20% Ekstrak BM dengan perendaman 6 jam	19.33 abcd
B1P3 = 20% Ekstrak BM dengan perendaman 9 jam	28.67 e
B2P1 = 40% Ekstrak BM dengan perendaman 3 jam	28.00 e
B2P2 = 40% Ekstrak BM dengan perendaman 6 jam	24.67 e
B2P3 = 40% Ekstrak BM dengan perendaman 9 jam	22.00 bcde
B3P1 = 60% Ekstrak BM dengan perendaman 3 jam	20.67 bcde
B3P2 = 60% Ekstrak BM dengan perendaman 6 jam	36.67 e
B3P3 = 60% Ekstrak BM dengan perendaman 9 jam	32.67 e
B4P1 = 80% Ekstrak BM dengan perendaman 3 jam	17.33 ab
B4P2 = 80% Ekstrak BM dengan perendaman 6 jam	22.67 bcde
B4P3 = 80% Ekstrak BM dengan perendaman 9 jam	37.34 e
B5P1 = 100% Ekstrak BM dengan perendaman 3 jam	24.00 e
B5P2 = 100% Ekstrak BM dengan perendaman 6 jam	21.33 bcde
B5P3 = 100% Ekstrak BM dengan perendaman 9 jam	19.33 abcd
BNT 0.05	3.92

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Tabel 11. Pengaruh ekstrak bawang merah terhadap benih mati benih kedelai

Perlakuan	Rata-rata
B0 = 0% Tanpa ekstrak bawang merah	30.22 b
B1 = 20 % ekstrak bawang merah	28.89 ab
B2 = 40 % ekstrak bawang merah	26.89 ab
B3 = 60 % ekstrak bawang merah	27.78 ab
B4 = 80 % ekstrak bawang merah	22.88 a
B5 = 100 % ekstrak bawang merah	26.00 ab
BNT 0.05	6.57

Sumber: Data primer setelah diolah, (2025)

Ket: Angka-angka yang diikuti huruf sama menunjukkan tidak berbeda berdasarkan Uji BNT taraf 0,05

Selain itu, pada Tabel 11 hasil analisis ragam juga menunjukkan bahwa perlakuan ekstrak bawang merah berpengaruh nyata terhadap persentase benih mati, sedangkan lama perendaman tidak berpengaruh signifikan dan tidak terjadi interaksi antara keduanya. Persentase benih mati terendah diperoleh pada perlakuan 80% ekstrak bawang merah sebesar 22,88%, sedangkan kontrol menunjukkan nilai tertinggi yaitu 30,22%. Hal ini mengindikasikan bahwa fitohormon alami dalam ekstrak bawang

merah mampu memperbaiki kerusakan fisiologis dan mempertahankan viabilitas benih.

Penurunan jumlah benih mati pada perlakuan 80 % ekstrak bawang merah diduga berkaitan dengan peran auksin dan giberelin yang merangsang aktivitas enzim hidrolitik, memperbaiki metabolisme respirasi, serta menyediakan energi yang cukup untuk memulai perkecambahan (Taiz, et al., 2018). Hasil ini sejalan dengan penelitian Siregar, et al., (2015) pada benih

gaharu dan Fitriani, et al., (2020) pada benih padi, yang menunjukkan bahwa invigorasi dengan ZPT alami dapat menekan kematian benih melalui peningkatan metabolisme dan perbaikan jaringan embrio. Sebaliknya, persentase benih mati yang lebih tinggi pada kontrol mencerminkan proses deteriorasi alami akibat berkurangnya cadangan makanan yang pada dan kerusakan membran, akhirnya menyebabkan penurunan viabilitas benih seiring akumulasi kerusakan oksidatif (Bewley, et al., 2013); (McDonald, 2015).

KESIMPULAN

Berdasarkan hasil penelitian dapat disimpulkan bahwa pemberian ekstrak bawang merah berpengaruh signifikan terhadap peningkatan viabilitas dan vigor benih kedelai, di mana konsentrasi 80% dengan lama perendaman 9 jam terbukti sebagai kombinasi terbaik dalam meningkatkan potensi tumbuh sebesar 80,89%, daya kecambah 29,78% dan 19,28%, vigor 62,67%, kecepatan 15,87% dan 22,72% serta keserampakan tumbuh yang lebih tinggi sebesar 17,33%, serta penurunan kecambah abnormal sebesar 17,33% dan benih mati sebesar 22,87%.

DAFTAR PUSTAKA

- Adie, M. M., & Krisnawati, A. (2018). Teknologi produksi benih kedelai. *Jurnal Litbang Pertanian*, 37(1), 27–36.
- Benard, R., Odindo, A. O., & Modi, A. T. (2021). Seed priming with plant growth regulators

- influences germination and seedling vigour of sweet corn (*Zea mays* L. var. saccharata). *South African Journal of Plant and Soil*, 38(1), 25–34. https://doi.org/10.1080/02571862.2020.1720347.
- Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M., & Nonogaki, H. (2013). *Seeds: Physiology of development, germination and dormancy* (3rd ed.). Springer. https://doi.org/10.1007/978-1-4614-4693-4.
- Farida, R., Suryanto, A., & Purnomo, D. (2020).

 Peningkatan keseragaman perkecambahan benih kopi melalui aplikasi zat pengatur tumbuh alami. *Jurnal Produksi Tanaman*, 8(9), 1015–1021.
- Farooq, M., Hussain, M., & Siddique, K. H. M. (2019). Seed priming improves crop performance under suboptimal germination environments. *Advances in Agronomy*, 153, 169–228.
- Fitriani, D., Wardati, & Nurdiana, A. (2020). Seed invigoration using natural plant growth regulators to improve seed quality of rice (*Oryza sativa* L.). *Jurnal Agronomi Indonesia*, 48(1), 69–76.
- Hampton, J. G., & TeKrony, D. M. (2013).

 Handbook of vigour test methods (4th ed.).

 The International Seed Testing Association.
- ISTA. (2020). *International rules for seed testing* 2020. International Seed Testing Association.
- Kurniati, T., Gofar, N., & Nursyamsi, D. (2017). Kandungan hormon auksin pada ekstrak bawang merah dan aplikasinya terhadap pertumbuhan tanaman. *Jurnal Penelitian Pertanian Terapan*, 17(3), 173–179.
- Lubis, R. R., Kurniawan, T., & Zuyasna. (2018). Invigorasi benih tomat kadaluarsa dengan ekstrak bawang merah pada berbagai konsentrasi dan lama perendaman. *Jurnal Ilmiah Mahasiswa Pertanian*, 3(4), 175–184.
- Marfirani, & Melisa. (2014). Pengaruh pemberian berbagai konsentrasi filtrat umbi bawang merah terhadap pertumbuhan stek melati "Rato Ebu". *Lentera Biologi*, 3(1), 73–76.

- McDonald, M. B. (2015). Seed deterioration: Physiology, repair and assessment. *Seed Science and Technology*, 43(3), 531–541. https://doi.org/10.15258/sst.2015.43.3.12.
- Nugrahaeni, N. (2016). Varietas dan teknologi produksi benih kedelai. *Buletin Palawija*, 14(1), 45–54.
- Nonogaki, H., Bassel, G. W., & Bewley, J. D. (2018). Germination—Still a mystery. Plant Science, 179(6), 574–581. https://doi.org/10.1016/j.plantsci.2010.02. 010.
- Purnawati, S., Ilyas, S., & Sundarsono. (2014). Perlakuan invigorasi untuk meningkatkan mutu fisiologis dan kesehatan benih padi hibrida Intan-2 selama penyimpanan. *Jurnal Agronomi Indonesia*, 42(3), 180–186.
- Putri, A. P., Suryanto, A., & Koesriharti, K. (2020). Seed invigoration on green bean (*Vigna radiata* L.) using plant growth

- regulators. *Jurnal Produksi Tanaman*, 8(6), 627–633.
- Siregar, A. P., Zuhry, E., & Sampoerno, S. (2015). Pertumbuhan bibit gaharu (*Aquilaria malaccensis*) dengan pemberian zat pengatur tumbuh asal bawang merah. *JOM Faperta*, 2(1), 1–10.
- Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2018). *Plant physiology and development* (6th ed.). Sinauer Associates.
- Upreti, K. K., & Sharma, M. (2016). Role of plant growth regulators in abiotic stress tolerance. In N. S. Rao, A. K. Shivashankara, & R. H. Laxman (Eds.), *Abiotic stress physiology of horticultural crops* (pp. 19–46). Springer.
- Yusuf, M., Arsyad, M., & Satria, B. (2021). Effect of gibberellin and auxin application on seed germination and seedling growth of maize (*Zea mays* L.). *IOP Conference Series: Earth and Environmental Science*, 681(1), 012025.